IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v7y2012i1p109-131.html
   My bibliography  Save this article

The Mundlak Approach in the Spatial Durbin Panel Data Model

Author

Listed:
  • Nicolas Debarsy

Abstract

This paper extends the Mundlak approach to the spatial Durbin panel data model (SDM) to help the applied researcher to determine the adequacy of the random effects specification in this setup. We propose a likelihood ratio (LR) test that assesses the significance of the correlation between regressors and individual effects. By contrast to the Hausman test, the Mundlak approach identifies (to some extent) the regressors correlated with individual effects. The second advantage is that once the correlation with individual effects has been modelled through an auxiliary regression, the random effects specification provides consistent estimators and the effect of time-constant variables can be estimated. Some Monte Carlo simulations study the properties of this proposed LR test in small samples and show that in some cases, it has a better behaviour than the Hausman test. We finally illustrate the usefulness of the extended Mundlak approach by estimating a house price model where some of the price determinants are time-constant. We show that ignoring the endogeneity of regressors with respect to individual effects leads to unreliable estimated parameters while results obtained using the Mundlak approach and the fixed effects specification are similar (concerning time-varying variables), implying that correlation between regressors and individual effects is well captured. RÉSUMÉ la présente communication applique l'approche de Mundlak au modèle de données spatiales de Durbin pour aider le chercheur appliqué à déterminer dans quelle mesure la spécification des effets aléatoires est adéquate dans cette configuration. Nous proposons un test de ratio de vraisemblance évaluant l'importance de la corrélation entre régresseurs et effets individuels. Contrairement au test de Hausman, l'approche de Mundlak identifie (dans une certaine mesure) les régresseurs corrélés à des effets individuels. Le deuxième avantage est que lorsque la corrélation avec les effets individuels a été modélisée via une régression auxiliaire, la spécification des effets aléatoires fournit des estimateurs convergents, et il est alors possible d’évaluer l'effet de variables constantes dans le temps. Des simulations Monte Carlo étudient les propriétés de ce test de ratio de vraisemblance proposé dans des échantillons de taille finie, et indiquent que, dans certains cas, il présente un meilleur comportement que le test de Hausman. Nous illustrons enfin l'utilité de l'approche étendue de Mundlak en évaluant un modèle de prix des maisons, dans lequel certains déterminants des prix sont constants dans le temps. Nous montrons que si on ne prend pas en compte l'endogénéité des régresseurs par rapport aux effets individuels, on obtient des paramétres estimés non fiables, alors que les résultats obtenus avec l'approche de Mundlak et la spécification des effets fixes sont similaires (sur le plan des variables variant dans le temps), ce qui implique que la corrélation entre régresseurs et effets individuels est bien captée. EXTRACTO Este estudio extiende el planteamiento Mundlak al modelo espacial de datos de panel (SDM) Durbin para ayudar al investigador aplicado a determinar la idoneidad de la especificación de efectos aleatorios dentro de esta configuración. Proponemos una prueba de relación de la probabilidad (LR) que evalúa la significancia de la correlación entre regresores y efectos individuales. En contraste con la prueba Hausman, el planteamiento Mundlak identifica (hasta cierto punto) los regresores correlacionados con efectos individuales. La segunda ventaja es que, una vez modelada la correlación con efectos individuales a través de una regresión auxiliar, la especificación de efectos aleatorios proporciona estimadores consistentes y puede estimarse el efecto de las variables constantes en el tiempo. Algunas simulaciones de Monte Carlo estudian las propiedades de esta prueba LR propuesta en muestras pequeñas y demuestran que, en algunos casos, se comporta mejor que la prueba Hausman. Finalmente, ilustramos la utilidad del planteamiento Mundlak ampliado estimando el precio de una vivienda donde varios determinantes del precio son constantes en el tiempo. Mostramos que ignorar la endogeneidad de los regresores con respecto a efectos individuales conduce a parámetros estimados no fiables, mientras que los resultados obtenidos mediante el planteamiento Mundlak y la especificación de efectos fijos son similares (en lo concerniente a variables que varan en el tiempo), sugiriendo que la correlación entre regresores y efectos individuales se ha capturado satisfactoriamente

Suggested Citation

  • Nicolas Debarsy, 2012. "The Mundlak Approach in the Spatial Durbin Panel Data Model," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 109-131, March.
  • Handle: RePEc:taf:specan:v:7:y:2012:i:1:p:109-131
    DOI: 10.1080/17421772.2011.647059
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2011.647059
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas DEBARSY & Jean-Yves GNABO & Malik KERKOUR, 2016. "Sovereign Wealth Funds’ cross-border investments: assessing the role of country-level drivers and spatial competition," LEO Working Papers / DR LEO 2173, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    2. Baltagi, Badi H. & Yen, Yin-Fang, 2014. "Hospital treatment rates and spillover effects: Does ownership matter?," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 193-202.
    3. Matt Ruther, 2014. "The effect of growth in foreign born population share on county homicide rates: A spatial panel approach," Papers in Regional Science, Wiley Blackwell, vol. 93, pages 1-23, November.
    4. Gude, Alberto & Álvarez, Inmaculada C. & Orea, Luis, 2017. "Heterogeneous spillovers among Spanish provinces: A generalized spatial stochastic frontier model," Efficiency Series Papers 2017/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    5. Luisa Corrado & Bernard Fingleton, 2016. "The W Matrix in Network and Spatial Econometrics: Issues Relating to Specification and Estimation," CEIS Research Paper 369, Tor Vergata University, CEIS, revised 12 Feb 2016.
    6. Emanuela Marrocu & Silvia Balia & Rinaldo Brau, 2016. "A spatial analysis of inter-regional patient mobility in Italy," ERSA conference papers ersa16p127, European Regional Science Association.
    7. Karen Miranda & Oscar Martínez Ibáñez & Miguel Manjón Antolín, 2015. "Estimating Individual Effects and their Spatial Spillovers in Linear Panel Data Models," Post-Print hal-01430809, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:7:y:2012:i:1:p:109-131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.