IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v7y2012i1p109-131.html
   My bibliography  Save this article

The Mundlak Approach in the Spatial Durbin Panel Data Model

Author

Listed:
  • Nicolas Debarsy

Abstract

This paper extends the Mundlak approach to the spatial Durbin panel data model (SDM) to help the applied researcher to determine the adequacy of the random effects specification in this setup. We propose a likelihood ratio (LR) test that assesses the significance of the correlation between regressors and individual effects. By contrast to the Hausman test, the Mundlak approach identifies (to some extent) the regressors correlated with individual effects. The second advantage is that once the correlation with individual effects has been modelled through an auxiliary regression, the random effects specification provides consistent estimators and the effect of time-constant variables can be estimated. Some Monte Carlo simulations study the properties of this proposed LR test in small samples and show that in some cases, it has a better behaviour than the Hausman test. We finally illustrate the usefulness of the extended Mundlak approach by estimating a house price model where some of the price determinants are time-constant. We show that ignoring the endogeneity of regressors with respect to individual effects leads to unreliable estimated parameters while results obtained using the Mundlak approach and the fixed effects specification are similar (concerning time-varying variables), implying that correlation between regressors and individual effects is well captured. RÉSUMÉ la présente communication applique l'approche de Mundlak au modèle de données spatiales de Durbin pour aider le chercheur appliqué à déterminer dans quelle mesure la spécification des effets aléatoires est adéquate dans cette configuration. Nous proposons un test de ratio de vraisemblance évaluant l'importance de la corrélation entre régresseurs et effets individuels. Contrairement au test de Hausman, l'approche de Mundlak identifie (dans une certaine mesure) les régresseurs corrélés à des effets individuels. Le deuxième avantage est que lorsque la corrélation avec les effets individuels a été modélisée via une régression auxiliaire, la spécification des effets aléatoires fournit des estimateurs convergents, et il est alors possible d’évaluer l'effet de variables constantes dans le temps. Des simulations Monte Carlo étudient les propriétés de ce test de ratio de vraisemblance proposé dans des échantillons de taille finie, et indiquent que, dans certains cas, il présente un meilleur comportement que le test de Hausman. Nous illustrons enfin l'utilité de l'approche étendue de Mundlak en évaluant un modèle de prix des maisons, dans lequel certains déterminants des prix sont constants dans le temps. Nous montrons que si on ne prend pas en compte l'endogénéité des régresseurs par rapport aux effets individuels, on obtient des paramétres estimés non fiables, alors que les résultats obtenus avec l'approche de Mundlak et la spécification des effets fixes sont similaires (sur le plan des variables variant dans le temps), ce qui implique que la corrélation entre régresseurs et effets individuels est bien captée. EXTRACTO Este estudio extiende el planteamiento Mundlak al modelo espacial de datos de panel (SDM) Durbin para ayudar al investigador aplicado a determinar la idoneidad de la especificación de efectos aleatorios dentro de esta configuración. Proponemos una prueba de relación de la probabilidad (LR) que evalúa la significancia de la correlación entre regresores y efectos individuales. En contraste con la prueba Hausman, el planteamiento Mundlak identifica (hasta cierto punto) los regresores correlacionados con efectos individuales. La segunda ventaja es que, una vez modelada la correlación con efectos individuales a través de una regresión auxiliar, la especificación de efectos aleatorios proporciona estimadores consistentes y puede estimarse el efecto de las variables constantes en el tiempo. Algunas simulaciones de Monte Carlo estudian las propiedades de esta prueba LR propuesta en muestras pequeñas y demuestran que, en algunos casos, se comporta mejor que la prueba Hausman. Finalmente, ilustramos la utilidad del planteamiento Mundlak ampliado estimando el precio de una vivienda donde varios determinantes del precio son constantes en el tiempo. Mostramos que ignorar la endogeneidad de los regresores con respecto a efectos individuales conduce a parámetros estimados no fiables, mientras que los resultados obtenidos mediante el planteamiento Mundlak y la especificación de efectos fijos son similares (en lo concerniente a variables que varan en el tiempo), sugiriendo que la correlación entre regresores y efectos individuales se ha capturado satisfactoriamente

Suggested Citation

  • Nicolas Debarsy, 2012. "The Mundlak Approach in the Spatial Durbin Panel Data Model," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 109-131, March.
  • Handle: RePEc:taf:specan:v:7:y:2012:i:1:p:109-131
    DOI: 10.1080/17421772.2011.647059
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2011.647059
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2011.647059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pfaffermayr, Michael, 2009. "Conditional [beta]- and [sigma]-convergence in space: A maximum likelihood approach," Regional Science and Urban Economics, Elsevier, vol. 39(1), pages 63-78, January.
    2. Michel Mignolet & Marie-Eve Mulquin & Frédérique Denil, 2004. "Interregional differences in taxes and population mobility," ERSA conference papers ersa04p104, European Regional Science Association.
    3. Fingleton, Bernard, 2010. "Predicting the geography of house prices," LSE Research Online Documents on Economics 33507, London School of Economics and Political Science, LSE Library.
    4. Badi H. Baltagi & Peter Egger & Michael Pfaffermayr, 2013. "A Generalized Spatial Panel Data Model with Random Effects," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 650-685, August.
    5. Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
    6. Kurt J. Beron & Yaw Hanson & James C. Murdoch & Mark A. Thayer, 2004. "Hedonic Price Functions and Spatial Dependence: Implications for the Demand for Urban Air Quality," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 12, pages 267-281, Springer.
    7. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    8. Cem ERTUR & Wilfried KOCH, 2008. "A Contribution to the Schumpeterian Growth Theory and Empirics," LEO Working Papers / DR LEO 160, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    9. Liv Osland, 2010. "An Application of Spatial Econometrics in Relation to Hedonic House Price Modeling," Journal of Real Estate Research, Taylor & Francis Journals, vol. 32(3), pages 289-320, January.
    10. Liv Osland, 2010. "An Application of Spatial Econometrics in Relation to Hedonic House Price Modelling," Journal of Real Estate Research, American Real Estate Society, vol. 32(3), pages 289-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miranda, Karen & Martínez Ibáñez, Oscar & Manjón Antolín, Miguel C., 2016. "Estimating individual effects and their spatial spillovers in linear panel data models: Public capital spillovers after all?," Working Papers 2072/321479, Universitat Rovira i Virgili, Department of Economics.
    2. Debarsy, Nicolas & Gnabo, Jean-Yves & Kerkour, Malik, 2017. "Sovereign wealth funds’ cross-border investments: Assessing the role of country-level drivers and spatial competition," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 68-87.
    3. Baltagi, Badi H. & Yen, Yin-Fang, 2014. "Hospital treatment rates and spillover effects: Does ownership matter?," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 193-202.
    4. Matt Ruther, 2014. "The effect of growth in foreign born population share on county homicide rates: A spatial panel approach," Papers in Regional Science, Wiley Blackwell, vol. 93, pages 1-23, November.
    5. Alberto Gude & Inmaculada Álvarez & Luis Orea, 2018. "Heterogeneous spillovers among Spanish provinces: a generalized spatial stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 50(3), pages 155-173, December.
    6. Joseph L Dieleman & Tara Templin, 2014. "Random-Effects, Fixed-Effects and the within-between Specification for Clustered Data in Observational Health Studies: A Simulation Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-17, October.
    7. Wei Dong & Xiaomi Hou & Guowei Qin, 2023. "Research on the Carbon Emission Reduction Effect of Green Taxation under China’s Fiscal Decentralization," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    8. Boris E. Bravo‐Ureta & Víctor H. Moreira & Javier L. Troncoso & Alan Wall, 2020. "Plot‐level technical efficiency accounting for farm‐level effects: Evidence from Chilean wine grape producers," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 811-824, November.
    9. Luisa Corrado & Bernard Fingleton, 2016. "The W Matrix in Network and Spatial Econometrics: Issues Relating to Specification and Estimation," CEIS Research Paper 369, Tor Vergata University, CEIS, revised 12 Feb 2016.
    10. Karen Miranda & Oscar Martínez Ibáñez & Miguel Manjón Antolín, 2015. "Estimating Individual Effects and their Spatial Spillovers in Linear Panel Data Models," Post-Print hal-01430809, HAL.
    11. Li, Liyao & Yang, Zhenlin, 2021. "Spatial dynamic panel data models with correlated random effects," Journal of Econometrics, Elsevier, vol. 221(2), pages 424-454.
    12. Josip Glaurdić & Vuk Vuković, 2017. "Granting votes: exposing the political bias of intergovernmental grants using the within-between specification for panel data," Public Choice, Springer, vol. 171(1), pages 223-241, April.
    13. Nicolas Debarsy & Jean-Yves Gnabo & Malik Kerkour, 2016. "Sovereign Wealth Funds’ cross-border investments: assessing the role of country-level drivers and spatial competition," Working Papers hal-01251243, HAL.
    14. Yuliya Ponomareva, 2019. "Balancing control and delegation: the moderating influence of managerial discretion on performance effects of board monitoring and CEO human capital," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(1), pages 195-225, March.
    15. Reinhold Kosfeld & Timo Mitze, 2023. "Research and development intensive clusters and regional competitiveness," Growth and Change, Wiley Blackwell, vol. 54(4), pages 885-911, December.
    16. Joséphine Leuba, 2019. "Natural amenities and the spatial distribution of Swiss income," IRENE Working Papers 19-04, IRENE Institute of Economic Research.
    17. Miranda, Karen & Martínez Ibáñez, Oscar & Manjón Antolín, Miguel C., 2018. "A correlated random effects spatial Durbin model," Working Papers 2072/313840, Universitat Rovira i Virgili, Department of Economics.
    18. Glass, Anthony J. & Kenjegalieva, Karligash & Douch, Mustapha, 2020. "Uncovering spatial productivity centers using asymmetric bidirectional spillovers," European Journal of Operational Research, Elsevier, vol. 285(2), pages 767-788.
    19. Marcos Sanso-Navarro & María Vera-Cabello & Miguel Puente-Ajovín, 2020. "Regional convergence and spatial dependence: a worldwide perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 65(1), pages 147-177, August.
    20. Emanuela Marrocu & Silvia Balia & Rinaldo Brau, 2016. "A spatial analysis of inter-regional patient mobility in Italy," ERSA conference papers ersa16p127, European Regional Science Association.
    21. Wang, Wei & Lee, Lung-fei, 2013. "Estimation of spatial panel data models with randomly missing data in the dependent variable," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 521-538.
    22. Bełej, Mirosław & Cellmer, Radosław & Foryś, Iwona & Głuszak, Michał, 2023. "Airports in the urban landscape: externalities, stigmatization and housing market," Land Use Policy, Elsevier, vol. 126(C).
    23. Marchesani, Filippo & Masciarelli, Francesca & Bikfalvi, Andrea, 2023. "Smart city as a hub for talent and innovative companies: Exploring the (dis) advantages of digital technology implementation in cities," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    2. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    3. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    4. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    5. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    6. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    7. repec:rri:wpaper:201303 is not listed on IDEAS
    8. Badi H. Baltagi & Peter Egger & Michael Pfaffermayr, 2007. "A Monte Carlo Study for Pure and Pretest Estimators of a Panel Data Model with Spatially Autocorrelated Disturbances," Annals of Economics and Statistics, GENES, issue 87-88, pages 11-38.
    9. Glass, Anthony J. & Kenjegalieva, Karligash & Ajayi, Victor & Adetutu, Morakinyo & Sickles, Robin C., 2016. "Relative Winners and Losers from Efficiency Spillovers in Africa with Policy Implications for Regional Integration," Working Papers 16-003, Rice University, Department of Economics.
    10. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    11. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    12. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    13. Xiaowen Dai & Libin Jin, 2021. "Minimum distance quantile regression for spatial autoregressive panel data models with fixed effects," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-13, December.
    14. Lin, Xu & Zhang, Jihu & Jiang, Shanhe, 2022. "Spatial and temporal correlations of crime in Detroit: Evidence from spatial dynamic panel data models," International Review of Law and Economics, Elsevier, vol. 72(C).
    15. Ming He & Kuan-Pin Lin, 2015. "Testing in a Random Effects Panel Data Model with Spatially Correlated Error Components and Spatially Lagged Dependent Variables," Econometrics, MDPI, vol. 3(4), pages 1-36, November.
    16. Felix Lorenz & Jonas Willwersch & Marcelo Cajias & Franz Fuerst, 2023. "Interpretable machine learning for real estate market analysis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(5), pages 1178-1208, September.
    17. He, Ming & Lin, Kuan-Pin, 2015. "Testing spatial effects and random effects in a nested panel data model," Economics Letters, Elsevier, vol. 135(C), pages 85-91.
    18. Leal, Ana R. & Husted, Bryan W. & Flores Segovia, Miguel Alejandro, 2021. "Environmental performance spillovers among Mexican industrial facilities: The case of greenhouse gases," Journal of Business Research, Elsevier, vol. 135(C), pages 711-720.
    19. Zhang, Yuanqing & Sun, Yanqing, 2015. "Estimation of partially specified dynamic spatial panel data models with fixed-effects," Regional Science and Urban Economics, Elsevier, vol. 51(C), pages 37-46.
    20. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    21. Alain Pirotte & Jesús Mur, 2017. "Neglected dynamics and spatial dependence on panel data: consequences for convergence of the usual static model estimators," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 202-229, July.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:7:y:2012:i:1:p:109-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.