IDEAS home Printed from https://ideas.repec.org/a/eee/regeco/v46y2014icp103-115.html
   My bibliography  Save this article

On the finite sample properties of pre-test estimators of spatial models

Author

Listed:
  • Piras, Gianfranco
  • Prucha, Ingmar R.

Abstract

This paper explores the properties of pre-test strategies in estimating a linear Cliff–Ord-type spatial model when the researcher is unsure about the nature of the spatial dependence. More specifically, the paper explores the finite sample properties of the pre-test estimators introduced in Florax et al. (2003), which are based on Lagrange Multiplier (LM) tests, within the context of a Monte Carlo study. The performance of those estimators is compared with that of the maximum likelihood (ML) estimator of the encompassing model. We find that, even in a very simple setting, the bias of the estimates generated by pre-testing strategies can be very large and the empirical size of tests can differ substantially from the nominal size. This is in contrast to the ML estimator. However, if the true data generating process corresponds to the spatial error or lag model the issues arising with the pre-test estimators seem to be lessened.

Suggested Citation

  • Piras, Gianfranco & Prucha, Ingmar R., 2014. "On the finite sample properties of pre-test estimators of spatial models," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 103-115.
  • Handle: RePEc:eee:regeco:v:46:y:2014:i:c:p:103-115
    DOI: 10.1016/j.regsciurbeco.2014.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0166046214000325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.regsciurbeco.2014.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    3. Florax, Raymond & Folmer, Henk, 1992. "Specification and estimation of spatial linear regression models : Monte Carlo evaluation of pre-test estimators," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 405-432, September.
    4. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    5. Florax, Raymond J. G. M. & Folmer, Hendrik & Rey, Sergio J., 2003. "Specification searches in spatial econometrics: the relevance of Hendry's methodology," Regional Science and Urban Economics, Elsevier, vol. 33(5), pages 557-579, September.
    6. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    7. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    8. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    9. Baltagi, Badi H. & Liu, Long, 2008. "Testing for random effects and spatial lag dependence in panel data models," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3304-3306, December.
    10. Leeb, Hannes & P tscher, Benedikt M., 2008. "Guest Editors' Editorial: Recent Developments In Model Selection And Related Areas," Econometric Theory, Cambridge University Press, vol. 24(02), pages 319-322, April.
    11. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    12. Baltagi, Badi H. & Heun Song, Seuck & Cheol Jung, Byoung & Koh, Won, 2007. "Testing for serial correlation, spatial autocorrelation and random effects using panel data," Journal of Econometrics, Elsevier, vol. 140(1), pages 5-51, September.
    13. Bera, Anil K. & Yoon, Mann J., 1993. "Specification Testing with Locally Misspecified Alternatives," Econometric Theory, Cambridge University Press, vol. 9(4), pages 649-658, August.
    14. Badi H. Baltagi & Peter Egger & Michael Pfaffermayr, 2013. "A Generalized Spatial Panel Data Model with Random Effects," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 650-685, August.
    15. Harry H. Kelejian & Dennis P. Robinson, 1995. "Spatial Correlation: A Suggested Alternative to the Autoregressive Model," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 3, pages 75-95, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagayasu, Jun, 2014. "Regional inflation, spatial location and the Balassa-Samuelson effect," MPRA Paper 59220, University Library of Munich, Germany.
    2. Pede, Valerien O. & Florax, Raymond J.G.M. & Lambert, Dayton M., 2014. "Spatial econometric STAR models: Lagrange multiplier tests, Monte Carlo simulations and an empirical application," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 118-128.
    3. Prodosh Simlai, 2018. "Spatial Dependence, Idiosyncratic Risk, and the Valuation of Disaggregated Housing Data," The Journal of Real Estate Finance and Economics, Springer, vol. 57(2), pages 192-230, August.
    4. Gianfranco Piras, 2014. "Impact estimates for static spatial panel data models in R," Letters in Spatial and Resource Sciences, Springer, vol. 7(3), pages 213-223, October.
    5. Li, Haiqi & Chen, Xingyi & Liang, Jufang, 2022. "Shrinkage estimation of panel data models with interactive effects," Economics Letters, Elsevier, vol. 210(C).
    6. Jun Nagayasu, 2017. "Regional inflation, spatial locations and the Balassa-Samuelson effect: Evidence from Japan," Urban Studies, Urban Studies Journal Limited, vol. 54(6), pages 1482-1499, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    2. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    3. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    4. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    5. repec:rri:wpaper:201303 is not listed on IDEAS
    6. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    7. Ming He & Kuan-Pin Lin, 2015. "Testing in a Random Effects Panel Data Model with Spatially Correlated Error Components and Spatially Lagged Dependent Variables," Econometrics, MDPI, vol. 3(4), pages 1-36, November.
    8. Anil K. Bera & Osman Doğan & Süleyman Taşpınar & Monalisa Sen, 2020. "Specification tests for spatial panel data models," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-39, December.
    9. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    10. He, Ming & Lin, Kuan-Pin, 2013. "Locally adjusted LM test for spatial dependence in fixed effects panel data models," Economics Letters, Elsevier, vol. 121(1), pages 59-63.
    11. repec:asg:wpaper:1013 is not listed on IDEAS
    12. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    13. Harry H. Kelejian & Gianfranco Piras, 2016. "A J test for dynamic panel model with fixed effects, and nonparametric spatial and time dependence," Empirical Economics, Springer, vol. 51(4), pages 1581-1605, December.
    14. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    15. repec:rri:wpaper:201301 is not listed on IDEAS
    16. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    17. LE GALLO, Julie, 2000. "Econométrie spatiale 1 -Autocorrélation spatiale," LATEC - Document de travail - Economie (1991-2003) 2000-05, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    18. Jieun Lee, 2022. "Testing Endogeneity of Spatial Weights Matrices in Spatial Dynamic Panel Data Models," Papers 2209.05563, arXiv.org.
    19. Harald Badinger & Peter Egger, 2009. "Estimation of Higher-Order Spatial Autoregressive Panel Data Error Component Models," CESifo Working Paper Series 2556, CESifo.
    20. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    21. Taspinar, Suleyman & Dogan, Osman & Bera, Anil K., 2017. "GMM Gradient Tests for Spatial Dynamic Panel Data Models," MPRA Paper 82830, University Library of Munich, Germany.
    22. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.
    23. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.

    More about this item

    Keywords

    Spatial models; Spatial lag models; Spatial error models; Model selection; Pre-test estimators;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:regeco:v:46:y:2014:i:c:p:103-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/regec .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.