IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v063i18.html
   My bibliography  Save this article

Comparing Implementations of Estimation Methods for Spatial Econometrics

Author

Listed:
  • Bivand, Roger
  • Piras, Gianfranco

Abstract

Recent advances in the implementation of spatial econometrics model estimation techniques have made it desirable to compare results, which should correspond between implementations across software applications for the same data. These model estimation techniques are associated with methods for estimating impacts (emanating effects), which are also presented and compared. This review constitutes an up-to-date comparison of generalized method of moments and maximum likelihood implementations now available. The comparison uses the cross-sectional US county data set provided by Drukker, Prucha, and Raciborski (2013d). The comparisons will be cast in the context of alternatives using the MATLAB Spatial Econometrics toolbox, Stata's user-written sppack commands, Python with PySAL and R packages including spdep, sphet and McSpatial.

Suggested Citation

  • Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
  • Handle: RePEc:jss:jstsof:v:063:i18
    DOI: http://hdl.handle.net/10.18637/jss.v063.i18
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v063i18/v63i18.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i18/v63i18-replication.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i18/spdep_0.5-83.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i18/sphet_1.6.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i18/SEtoolbox_local.tar.gz
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v063.i18?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Luc Anselin & Nancy Lozano-Gracia, 2009. "Errors in variables and spatial effects in hedonic house price models of ambient air quality," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 5-34, Springer.
    3. Florax, Raymond & Folmer, Henk, 1992. "Specification and estimation of spatial linear regression models : Monte Carlo evaluation of pre-test estimators," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 405-432, September.
    4. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    5. Florax, Raymond J. G. M. & Folmer, Hendrik & Rey, Sergio J., 2003. "Specification searches in spatial econometrics: the relevance of Hendry's methodology," Regional Science and Urban Economics, Elsevier, vol. 33(5), pages 557-579, September.
    6. William W. Gould & Jeffrey Pitblado & Brian Poi, 2010. "Maximum Likelihood Estimation with Stata," Stata Press books, StataCorp LP, edition 4, number ml4, March.
    7. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    8. James Lesage & Manfred Fischer, 2008. "Spatial Growth Regressions: Model Specification, Estimation and Interpretation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(3), pages 275-304.
    9. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    10. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    11. Sergio Rey, 2009. "Show me the code: spatial analysis and open source," Journal of Geographical Systems, Springer, vol. 11(2), pages 191-207, June.
    12. David M. Drukker & Hua Peng & Ingmar Prucha & Rafal Raciborski, 2013. "Creating and managing spatial-weighting matrices with the spmat command," Stata Journal, StataCorp LP, vol. 13(2), pages 242-286, June.
    13. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    14. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    15. Kelejian, Harry H. & Piras, Gianfranco, 2011. "An extension of Kelejian's J-test for non-nested spatial models," Regional Science and Urban Economics, Elsevier, vol. 41(3), pages 281-292, May.
    16. Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
    17. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    18. David M. Drukker & Ingmar Prucha & Rafal Raciborski, 2013. "Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances," Stata Journal, StataCorp LP, vol. 13(2), pages 221-241, June.
    19. Harry Kelejian & George Tavlas & George Hondroyiannis, 2006. "A Spatial Modelling Approach to Contagion Among Emerging Economies," Open Economies Review, Springer, vol. 17(4), pages 423-441, December.
    20. Piras, Gianfranco, 2010. "sphet: Spatial Models with Heteroskedastic Innovations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i01).
    21. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    22. David M. Drukker & Peter Egger & Ingmar R. Prucha, 2013. "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 686-733, August.
    23. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    24. David M. Drukker & Ingmar Prucha & Rafal Raciborski, 2013. "A command for estimating spatial-autoregressive models with spatial-autoregressive disturbances and additional endogenous variables," Stata Journal, StataCorp LP, vol. 13(2), pages 287-301, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:rri:wpaper:201301 is not listed on IDEAS
    2. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    3. Marcos Herrera Gomez, 2015. "Econometría espacial usando Stata. Breve guía aplicada para datos de corte transversal," Working Papers 13, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    4. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    5. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    6. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    7. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    8. repec:asg:wpaper:1047 is not listed on IDEAS
    9. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    10. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    11. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    12. Piras, Gianfranco & Prucha, Ingmar R., 2014. "On the finite sample properties of pre-test estimators of spatial models," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 103-115.
    13. Laura de Dominicis & Raymond J.G.M. Florax & Henri L.F. de Groot, 2013. "Regional clusters of innovative activity in Europe: are social capital and geographical proximity key determinants?," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2325-2335, June.
    14. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    15. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    16. Julia Koschinsky & Nancy Lozano-Gracia & Gianfranco Piras, 2012. "The welfare benefit of a home’s location: an empirical comparison of spatial and non-spatial model estimates," Journal of Geographical Systems, Springer, vol. 14(3), pages 319-356, July.
    17. Christian Helmers & Manasa Patnam, 2014. "Does the rotten child spoil his companion? Spatial peer effects among children in rural India," Quantitative Economics, Econometric Society, vol. 5, pages 67-121, March.
    18. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.
    19. David M. Drukker & Ingmar Prucha & Rafal Raciborski, 2013. "Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances," Stata Journal, StataCorp LP, vol. 13(2), pages 221-241, June.
    20. Feichtinger, Paul & Salhofer, Klaus, 2014. "The common agricultural policy of the EU and agricultural land prices - a spatial econometric approach for Bavaria," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182751, European Association of Agricultural Economists.
    21. repec:asg:wpaper:1006 is not listed on IDEAS
    22. Oliviero A. Carboni, 2013. "A spatial analysis of R&D: the role of industry proximity," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(8), pages 820-839, November.
    23. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:063:i18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.jstatsoft.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.