IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04989094.html
   My bibliography  Save this paper

The Mundlak Approach in the Spatial Durbin Panel Data Model

Author

Listed:
  • Nicolas Debarsy

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper extends the Mundlak approach to the spatial Durbin panel data model (SDM) to help the applied researcher to determine the adequacy of the random effects specification in this setup. We propose a likelihood ratio (LR) test that assesses the significance of the correlation between regressors and individual effects. By contrast to the Hausman test, the Mundlak approach identifies (to some extend) the regressors correlated with individual effects. The second advantage is that once the correlation with individual effects has been modeled through an auxiliary regression, the random effects specification provides consistent estimators and the effect of time-constant variables can be estimated. Some Monte Carlo simulations study the properties of this proposed LR test in small samples and show that in some cases, it has a better behavior than the Hausman test. We finally illustrate the usefulness of the extended Mundlak approach by estimating a house price model where some of the price determinants are timeconstant. We show that ignoring the endogeneity of regressors with respect to individual effects leads to unreliable estimated parameters while results obtained using the Mundlak approach and the fixed effects specification are similar (concerning time-varying variables), implying that correlation between regressors and individual effects is well captured.

Suggested Citation

  • Nicolas Debarsy, 2012. "The Mundlak Approach in the Spatial Durbin Panel Data Model," Post-Print hal-04989094, HAL.
  • Handle: RePEc:hal:journl:hal-04989094
    DOI: 10.1080/17421772.2011.647059
    Note: View the original document on HAL open archive server: https://hal.science/hal-04989094v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04989094v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/17421772.2011.647059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pfaffermayr, Michael, 2009. "Conditional [beta]- and [sigma]-convergence in space: A maximum likelihood approach," Regional Science and Urban Economics, Elsevier, vol. 39(1), pages 63-78, January.
    2. Michel Mignolet & Marie-Eve Mulquin & Frédérique Denil, 2004. "Interregional differences in taxes and population mobility," ERSA conference papers ersa04p104, European Regional Science Association.
    3. Fingleton, Bernard, 2010. "Predicting the geography of house prices," LSE Research Online Documents on Economics 33507, London School of Economics and Political Science, LSE Library.
    4. Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
    5. Kurt J. Beron & Yaw Hanson & James C. Murdoch & Mark A. Thayer, 2004. "Hedonic Price Functions and Spatial Dependence: Implications for the Demand for Urban Air Quality," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 12, pages 267-281, Springer.
    6. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    7. Liv Osland, 2010. "An Application of Spatial Econometrics in Relation to Hedonic House Price Modeling," Journal of Real Estate Research, Taylor & Francis Journals, vol. 32(3), pages 289-320, January.
    8. Liv Osland, 2010. "An Application of Spatial Econometrics in Relation to Hedonic House Price Modelling," Journal of Real Estate Research, American Real Estate Society, vol. 32(3), pages 289-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glass, Anthony J. & Kenjegalieva, Karligash & Ajayi, Victor & Adetutu, Morakinyo & Sickles, Robin C., 2016. "Relative Winners and Losers from Efficiency Spillovers in Africa with Policy Implications for Regional Integration," Working Papers 16-003, Rice University, Department of Economics.
    2. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    3. Nicolas Debarsy, 2012. "The Mundlak Approach in the Spatial Durbin Panel Data Model," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 109-131, March.
    4. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    5. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    6. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    7. Felix Lorenz & Jonas Willwersch & Marcelo Cajias & Franz Fuerst, 2023. "Interpretable machine learning for real estate market analysis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(5), pages 1178-1208, September.
    8. Zhang, Yuanqing & Sun, Yanqing, 2015. "Estimation of partially specified dynamic spatial panel data models with fixed-effects," Regional Science and Urban Economics, Elsevier, vol. 51(C), pages 37-46.
    9. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.
    10. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    11. Christophe Muller & Pierre Pecher, 2018. "Transborder Ethnic Kin and Local Prosperity: Evidence from Night-Time Light Intensity in Africa," Working Papers halshs-01801170, HAL.
    12. Shenghao Bi & Wanying Zhang & Zhenjun Yan & Andrea Appolloni, 2024. "Impact of energy saving and emission reduction policy: Empirical evidence from regional and local business in China," Business Strategy and the Environment, Wiley Blackwell, vol. 33(8), pages 8815-8832, December.
    13. Carmelo Algeri & Antonio F. Forgione & Carlo Migliardo, 2022. "Do spatial dependence and market power matter in the diversification of cooperative banks?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.
    14. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    15. Mengqi Zhang & Boping Tian, 2023. "Profile Maximum Likelihood Estimation of Single-Index Spatial Dynamic Panel Data Model," Mathematics, MDPI, vol. 11(13), pages 1-16, July.
    16. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    17. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    18. Andree Ehlert & Andreas Lagemann & Jan Wedemeier, 2024. "Regional Variation in German Real Estate Prices: Socio-Economic and Pandemic Influences," Bremen Papers on Economics & Innovation 2402, University of Bremen, Faculty of Business Studies and Economics.
    19. Jieun Lee, 2022. "Testing Endogeneity of Spatial Weights Matrices in Spatial Dynamic Panel Data Models," Papers 2209.05563, arXiv.org.
    20. bouayad-agha-Hamouche, salima & turpin, nadine & védrine, lionel, 2012. "Fostering the potential endogenous development of European regions: a spatial dynamic panel data analysis of the Cohesion Policy," MPRA Paper 65470, University Library of Munich, Germany.

    More about this item

    Keywords

    Spatial autocorrelation; Panel data model; Random effects; Mundlak approach; House price model JEL: C12 C21 C23 C52; House price model JEL: C12; C21; C23; C52; Spatial autocorrelation; Panel data model; Random effects; Mundlak approach; House price model JEL: C12 C21 C23 C52; Spatial autocorrelation; Panel data model; Random effects; Mundlak approach; House price model JEL: C12;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04989094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.