IDEAS home Printed from https://ideas.repec.org/p/ags/aaea21/313959.html
   My bibliography  Save this paper

Nonlinear weather and climate-induced effects on hired farm labor wages: Evidence from the U.S. Cornbelt

Author

Listed:
  • Njuki, Eric

Abstract

No abstract is available for this item.

Suggested Citation

  • Njuki, Eric, 2021. "Nonlinear weather and climate-induced effects on hired farm labor wages: Evidence from the U.S. Cornbelt," 2021 Annual Meeting, August 1-3, Austin, Texas 313959, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea21:313959
    DOI: 10.22004/ag.econ.313959
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/313959/files/Abstracts_21_06_14_16_27_51_78__199_140_2_54_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.313959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michee Arnold Lachaud & Boris E. Bravo-Ureta & Carlos E. Ludena, 2017. "Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects," Climatic Change, Springer, vol. 143(3), pages 445-460, August.
    2. Solomon Hsiang & Marshall Burke, 2014. "Climate, conflict, and social stability: what does the evidence say?," Climatic Change, Springer, vol. 123(1), pages 39-55, March.
    3. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Climate and Conflict," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 577-617, August.
    4. Zahniser, Steven & Taylor, J. Edward & Hertz, Thomas & Charlton, Diane, 2019. "Rising Wages Point to a Tighter Farm Labor Market in the United States," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, vol. 0(01), February.
    5. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    6. Alwyn Young, 2014. "Structural Transformation, the Mismeasurement of Productivity Growth, and the Cost Disease of Services," American Economic Review, American Economic Association, vol. 104(11), pages 3635-3667, November.
    7. Young, Alwyn, 2014. "Structural transformation, the mismeasurement of productivity growth, and the cost disease of services," LSE Research Online Documents on Economics 60213, London School of Economics and Political Science, LSE Library.
    8. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    9. Michael J. Roberts & Wolfram Schlenker & Jonathan Eyer, 2013. "Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 236-243.
    10. Maoyong Fan & Susan Gabbard & Anita Alves Pena & Jeffrey M. Perloff, 2015. "Why Do Fewer Agricultural Workers Migrate Now?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 665-679.
    11. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413.
    12. Diane Charlton & J. Edward Taylor, 2016. "A Declining Farm Workforce: Analysis of Panel Data from Rural Mexico," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 1158-1180.
    13. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    14. Wallace E. Huffman & Yu Jin & Zheng Xu, 2018. "The economic impacts of technology and climate change: New evidence from U.S. corn yields," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 463-479, July.
    15. Wolfram Schlenker, 2019. "Agricultural Productivity and Producer Behavior," NBER Books, National Bureau of Economic Research, Inc, number schl-1, March.
    16. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    17. S. Seo, 2013. "An essay on the impact of climate change on US agriculture: weather fluctuations, climatic shifts, and adaptation strategies," Climatic Change, Springer, vol. 121(2), pages 115-124, November.
    18. Yu Jin & Wallace E. Huffman, 2016. "Measuring public agricultural research and extension and estimating their impacts on agricultural productivity: new insights from U.S. evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 47(1), pages 15-31, January.
    19. Charlton, Diane & Taylor, J. Edward & Vougioukas, Stavros & Rutledge, Zachariah, 2019. "Can Wages Rise Quickly Enough to Keep Workers in the Fields?," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 34(2), May.
    20. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2021. "Climate Change and Agriculture: Subsistence Farmers' Response to Extreme Heat," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 1-35, February.
    21. David Blakeslee & Ram Fishman & Veena Srinivasan, 2020. "Way Down in the Hole: Adaptation to Long-Term Water Loss in Rural India," American Economic Review, American Economic Association, vol. 110(1), pages 200-224, January.
    22. Adrian R Pagan & Anthony D Hall, 1983. "Diagnostic tests as residual analysis," Published Paper Series 1983-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    23. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    24. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    25. Danyelle Branco & José Féres, 2021. "Weather Shocks and Labor Allocation: Evidence from Rural Brazil," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1359-1377, August.
    26. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    27. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    2. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    3. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    4. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    5. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    6. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    7. Njuki, E. & Bravo-Ureta, B., 2018. "Accounting for the Impacts of Changing Configurations in Temperature and Precipitation on U.S. Agricultural Productivity," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277140, International Association of Agricultural Economists.
    8. Eric Njuki & Boris E. Bravo-Ureta & Christopher J. O’Donnell, 2019. "Decomposing agricultural productivity growth using a random-parameters stochastic production frontier," Empirical Economics, Springer, vol. 57(3), pages 839-860, September.
    9. Charles D. Kolstad & Frances C. Moore, 2019. "Estimating the Economic Impacts of Climate Change Using Weather Observations," NBER Working Papers 25537, National Bureau of Economic Research, Inc.
    10. Naser Amanzadeh & Toshi H. Arimura & Mohammad Vesal & Seyed Farshad Fatemi Ardestani, 2021. "The Distributional Effects of Climate Change:Evidence from Iran," RIEEM Discussion Paper Series 2007, Research Institute for Environmental Economics and Management, Waseda University.
    11. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    12. R. Jisung Park & Joshua Goodman & Michael Hurwitz & Jonathan Smith, 2020. "Heat and Learning," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 306-339, May.
    13. Chiara Falco & Marzio Galeotti & Alessandro Olper, 2018. "Climate change and Migration: Is Agriculture the Main Channel?," IEFE Working Papers 100, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    14. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    15. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    16. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    17. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.
    18. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    19. Jagnani, Maulik & Barrett, Christopher B. & Liu, Yanyan & You, Liangzhi, 2018. "In the Weeds: Effects of Temperature on Agricultural Input Decisions in Moderate Climates," 2018 Annual Meeting, August 5-7, Washington, D.C. 274241, Agricultural and Applied Economics Association.
    20. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).

    More about this item

    Keywords

    Production Economics; International Development; Research Methods/Statistical Methods;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea21:313959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.