IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/yxzfu.html
   My bibliography  Save this paper

The Impact of Climate Change on Risk and Return in Indian Agriculture

Author

Listed:
  • Costa, Francisco J M

    (FGV EPGE Brazilian School of Economics and Finance)

  • Forge, Fabien
  • Garred, Jason
  • Pessoa, João Paulo

Abstract

We investigate the extent to which climate change will result in insurable and uninsurable losses for farmers in India. Shifts in the distributions of temperature and precipitation may increase the volatility of farmers' yields, leading to rising but insurable risk, and/or reduce mean yields and thus cause permanent reductions in the returns to farming. We use a multi-run climate model to predict the future distribution of yields at the district level for sixteen major crops. For the average district, we project a sharp decline in mean agricultural revenue, but relatively small shifts in volatility. This is because weather draws resulting in extremely low agricultural revenue -- what had once been 1-in-100-year events -- are predicted to become the norm by the end of the century, implying substantial uninsurable losses from the changing climate.

Suggested Citation

  • Costa, Francisco J M & Forge, Fabien & Garred, Jason & Pessoa, João Paulo, 2020. "The Impact of Climate Change on Risk and Return in Indian Agriculture," SocArXiv yxzfu, Center for Open Science.
  • Handle: RePEc:osf:socarx:yxzfu
    DOI: 10.31219/osf.io/yxzfu
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e32d2d1f6631d006e5a4cd3/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/yxzfu?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    2. Kyle Emerick & Alain de Janvry & Elisabeth Sadoulet & Manzoor H. Dar, 2016. "Technological Innovations, Downside Risk, and the Modernization of Agriculture," American Economic Review, American Economic Association, vol. 106(6), pages 1537-1561, June.
    3. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    4. Daniel Urban & Michael Roberts & Wolfram Schlenker & David Lobell, 2012. "Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields," Climatic Change, Springer, vol. 112(2), pages 525-533, May.
    5. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    6. Derek Lemoine, 2021. "The Climate Risk Premium: How Uncertainty Affects the Social Cost of Carbon," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(1), pages 27-57.
    7. Kurosaki, Takashi & Fafchamps, Marcel, 2002. "Insurance market efficiency and crop choices in Pakistan," Journal of Development Economics, Elsevier, vol. 67(2), pages 419-453, April.
    8. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    9. Rosenzweig, Mark R & Binswanger, Hans P, 1993. "Wealth, Weather Risk and the Composition and Profitability of Agricultural Investments," Economic Journal, Royal Economic Society, vol. 103(416), pages 56-78, January.
    10. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    11. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    12. Noah S. Diffenbaugh & Thomas W. Hertel & Martin Scherer & Monika Verma, 2012. "Response of corn markets to climate volatility under alternative energy futures," Nature Climate Change, Nature, vol. 2(7), pages 514-518, July.
    13. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    14. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    15. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    16. David Blakeslee & Ram Fishman & Veena Srinivasan, 2020. "Way Down in the Hole: Adaptation to Long-Term Water Loss in Rural India," American Economic Review, American Economic Association, vol. 110(1), pages 200-224, January.
    17. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    18. Marshall Burke & John Dykema & David B. Lobell & Edward Miguel & Shanker Satyanath, 2015. "Incorporating Climate Uncertainty into Estimates of Climate Change Impacts," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 461-471, May.
    19. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    20. Fernando M. Arag'on & Francisco Oteiza & Juan Pablo Rud, 2019. "Climate Change and Agriculture: Subsistence Farmers' Response to Extreme Heat," Papers 1902.09204, arXiv.org, revised Feb 2019.
    21. Arnaud Costinot & Dave Donaldson & Cory Smith, 2016. "Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields around the World," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 205-248.
    22. Costas Arkolakis & Arnaud Costinot & Andres Rodriguez-Clare, 2012. "New Trade Models, Same Old Gains?," American Economic Review, American Economic Association, vol. 102(1), pages 94-130, February.
    23. Daniel L. Swain & Baird Langenbrunner & J. David Neelin & Alex Hall, 2018. "Increasing precipitation volatility in twenty-first-century California," Nature Climate Change, Nature, vol. 8(5), pages 427-433, May.
    24. Maximilian Auffhammer & V. Ramanathan & Jeffrey Vincent, 2012. "Climate change, the monsoon, and rice yield in India," Climatic Change, Springer, vol. 111(2), pages 411-424, March.
    25. Ram Fishman, 2018. "Groundwater depletion limits the scope for adaptation to increased rainfall variability in India," Climatic Change, Springer, vol. 147(1), pages 195-209, March.
    26. Tatyana Deryugina & Solomon Hsiang, 2017. "The Marginal Product of Climate," NBER Working Papers 24072, National Bureau of Economic Research, Inc.
    27. Treb Allen & David Atkin, 2022. "Volatility and the Gains From Trade," Econometrica, Econometric Society, vol. 90(5), pages 2053-2092, September.
    28. Jin-Ho Yoon & S-Y Simon Wang & Robert R. Gillies & Ben Kravitz & Lawrence Hipps & Philip J. Rasch, 2015. "Increasing water cycle extremes in California and in relation to ENSO cycle under global warming," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
    29. Solomon Hsiang & Paulina Oliva & Reed Walker, 2019. "The Distribution of Environmental Damages," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(1), pages 83-103.
    30. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    31. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    32. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    33. Jonathan I. Dingel & Kyle C. Meng & Solomon M. Hsiang, 2019. "Spatial Correlation, Trade, and Inequality: Evidence from the Global Climate," NBER Working Papers 25447, National Bureau of Economic Research, Inc.
    34. Kaustubh Thirumalai & Pedro N. DiNezio & Yuko Okumura & Clara Deser, 2017. "Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    35. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2021. "Climate Change and Agriculture: Subsistence Farmers' Response to Extreme Heat," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 1-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang, Anh Tuan & Sandro Nižetić, & Olcer, Aykut I. & Ong, Hwai Chyuan & Chen, Wei-Hsin & Chong, Cheng Tung & Thomas, Sabu & Bandh, Suhaib A. & Nguyen, Xuan Phuong, 2021. "Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications," Energy Policy, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    2. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
    3. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    4. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    5. Cui, Xiaomeng & Tang, Qu, 2024. "Extreme heat and rural household adaptation: Evidence from Northeast China," Journal of Development Economics, Elsevier, vol. 167(C).
    6. Wang, Di & Zhang, Peng & Chen, Shuai & Zhang, Ning, 2024. "Adaptation to temperature extremes in Chinese agriculture, 1981 to 2010," Journal of Development Economics, Elsevier, vol. 166(C).
    7. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    8. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    9. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    10. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    11. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate Change and Agriculture: Farmer Adaptation to Extreme Heat," Discussion Papers dp18-02, Department of Economics, Simon Fraser University.
    12. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    13. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    14. Acevedo, Sebastian & Mrkaic, Mico & Novta, Natalija & Pugacheva, Evgenia & Topalova, Petia, 2020. "The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact?," Journal of Macroeconomics, Elsevier, vol. 65(C).
    15. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    16. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    17. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    18. Lehr, Jakob & Rehdanz, Katrin, 2024. "The effect of temperature on energy related CO2 emissions and economic performance in German industry," Energy Economics, Elsevier, vol. 138(C).
    19. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    20. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:yxzfu. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.