IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332256.html
   My bibliography  Save this paper

Response of corn markets to climate volatility under alternative energy futures

Author

Listed:
  • Diffenbaugh, Noah S.
  • Hertel, Thomas W.
  • Scherer, Martin
  • Verma, Monika

Abstract

Recent price spikes have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades. However, commodity price volatility is also influenced by other factors, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture– energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the United States, which causes US corn price volatility to increase sharply in response to global warming projected to occur over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy–agriculture linkages and climate change.

Suggested Citation

  • Diffenbaugh, Noah S. & Hertel, Thomas W. & Scherer, Martin & Verma, Monika, 2012. "Response of corn markets to climate volatility under alternative energy futures," Conference papers 332256, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332256
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332256/files/5750.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gohin, Alexandre & Treguer, David, 2010. "On the (De)Stabilization Effects of Biofuels: Relative Contributions of Policy Instruments and Market Forces," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(1), pages 1-15.
    2. Jeffrey J. Reimer, 2007. "Assessing Global Computable General Equilibrium Model Validity Using Agricultural Price Volatility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 383-397.
    3. Wyatt Thompson & Seth Meyer & Pat Westhoff, 2010. "The New Markets for Renewable Identification Numbers," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(4), pages 588-603.
    4. Wyatt Thompson & Seth Meyer & Pat Westhoff, 2010. "The New Markets for Renewable Identification Numbers," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(4), pages 588-603.
    5. Farzad Taheripour & Thomas W. Hertel & Wallace E. Tyner, 2011. "Implications of biofuels mandates for the global livestock industry: a computable general equilibrium analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 42(3), pages 325-342, May.
    6. Brian D. Wright, 2011. "The Economics of Grain Price Volatility," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(1), pages 32-58.
    7. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.
    8. Thompson, Wyatt & Meyer, Seth D., 2011. "Epa Mandate Waivers Create New Uncertainties In Biodiesel Markets," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 26(2), pages 1-5.
    9. Noah Diffenbaugh & Martin Scherer, 2011. "Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries," Climatic Change, Springer, vol. 107(3), pages 615-624, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Peri, 2017. "Climate variability and the volatility of global maize and soybean prices," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 673-683, August.
    2. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    3. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    4. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    5. Tran, A. Nam & Welch, Jarrod R. & Lobell, David & Roberts, Michael J. & Schlenker, Wolfram, 2012. "Commodity Prices and Volatility in Response to Anticipated Climate Change," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124827, Agricultural and Applied Economics Association.
    6. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    7. Philip Abbott, 2014. "Biofuels, Binding Constraints, and Agricultural Commodity Price Volatility," NBER Chapters, in: The Economics of Food Price Volatility, pages 91-131, National Bureau of Economic Research, Inc.
    8. Ehsanreza Sajedinia & Wallace E. Tyner, 2021. "Use of General Equilibrium Models in Evaluating Biofuels Policies," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 14, pages 437-465, World Scientific Publishing Co. Pte. Ltd..
    9. Abokyi, Emmanuel & Asiedu, Kofi Fred, 2021. "Agricultural policy and commodity price stabilisation in Ghana: The role of buffer stockholding operations," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 16(4), December.
    10. Brown, Molly & Antle, John & Backlund, Peter & Carr, Edward & Easterling, Bill & Walsh, Margaret & Ammann, Caspar & Attavanich, Witsanu & Barrett, Chris & Bellemare, Marc & Dancheck, Violet & Funk, Ch, 2015. "Climate Change, Global Food Security and the U.S. Food System," MPRA Paper 105772, University Library of Munich, Germany.
    11. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    13. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.
    14. Hao, Na & Colson, Gregory & Seong, Byeongchan & Park, Cheolwoo & Wetzstein, Michael, 2015. "Drought, ethanol, and livestock," Energy Economics, Elsevier, vol. 49(C), pages 301-307.
    15. Mohammad Torshizi & Richard Gray, 2022. "Adaptability and variety adoption: Implications for plant breeding policy in a changing climate," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 842-859, October.
    16. Nong, Duy & Nguyen, Trung H. & Wang, Can & Van Khuc, Quy, 2020. "The environmental and economic impact of the emissions trading scheme (ETS) in Vietnam," Energy Policy, Elsevier, vol. 140(C).
    17. Noah Diffenbaugh & Filippo Giorgi, 2012. "Climate change hotspots in the CMIP5 global climate model ensemble," Climatic Change, Springer, vol. 114(3), pages 813-822, October.
    18. Agie Wandala Putra & Jatna Supriatna & Raldi Hendro Koestoer & Tri Edhi Budhi Soesilo, 2021. "Differences in Local Rice Price Volatility, Climate, and Macroeconomic Determinants in the Indonesian Market," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    19. Thompson, Wyatt & Lu, Yaqiong & Gerlt, Scott & Yang, Xianyu & Campbell, J. Elliott & Kueppers, Lara M. & Snyder, Mark A., 2018. "Automatic Responses of Crop Stocks and Policies Buffer Climate Change Effects on Crop Markets and Price Volatility," Ecological Economics, Elsevier, vol. 152(C), pages 98-105.
    20. Nong, Duy, 2020. "Development of the electricity-environmental policy CGE model (GTAP-E-PowerS): A case of the carbon tax in South Africa," Energy Policy, Elsevier, vol. 140(C).
    21. Hervé OTT, 2012. "Fertilizer markets and its interplay with commodity and food prices," JRC Research Reports JRC73043, Joint Research Centre (Seville site).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Abbott, 2014. "Biofuels, Binding Constraints, and Agricultural Commodity Price Volatility," NBER Chapters, in: The Economics of Food Price Volatility, pages 91-131, National Bureau of Economic Research, Inc.
    2. Jared C. Carbone & Linda T.M. Bui & Don Fullerton & Sergey Paltsev & Ian Sue Wing, 2022. "When and How to Use Economy-Wide Models for Environmental Policy Analysis," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 447-465, October.
    3. Michiel van Dijk & George Philippidis & Geert Woltjer, 2016. "Catching up with history: A methodology to validate global CGE models," FOODSECURE Technical papers 9, LEI Wageningen UR.
    4. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    6. Whistance, Jarrett & Thompson, Wyatt, 2014. "The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets," Energy Policy, Elsevier, vol. 74(C), pages 147-157.
    7. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt, 2017. "The causes of two-way U.S.–Brazil ethanol trade and the consequences for greenhouse gas emission," Energy, Elsevier, vol. 141(C), pages 2045-2053.
    8. Cui, Hao (David) & Tyner, Wally, 2017. "Modeling Land Intensification Response in GTAP: Implications for Biofuels Induced Land Use Change," Conference papers 332812, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Thompson, Wyatt & Lu, Yaqiong & Gerlt, Scott & Yang, Xianyu & Campbell, J. Elliott & Kueppers, Lara M. & Snyder, Mark A., 2018. "Automatic Responses of Crop Stocks and Policies Buffer Climate Change Effects on Crop Markets and Price Volatility," Ecological Economics, Elsevier, vol. 152(C), pages 98-105.
    10. Ahmedov, Zafarbek & Woodard, Joshua D., 2012. "Do RIN Mandates and Blender's Tax Credit Affect Blenders' Hedging Strategies?," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124980, Agricultural and Applied Economics Association.
    11. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    12. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    13. Markel, Evan & English, Burton C. & Lambert, Dayton, 2016. "Thresholds and Regime Change in the Market for Renewable Identification Numbers," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236037, Agricultural and Applied Economics Association.
    14. Artavia, Marco & Grethe, Harald & Zimmermann, Georg, 2015. "Stochastic market modeling with Gaussian Quadratures: Do rotations of Stroud's octahedron matter?," Economic Modelling, Elsevier, vol. 45(C), pages 155-168.
    15. Whistance, Jarrett & Ripplinger, David & Thompson, Wyatt, 2016. "Biofuel-related price transmission using Renewable Identification Number prices to signal mandate regime," Energy Economics, Elsevier, vol. 55(C), pages 19-29.
    16. JunJie Wu & Christian Langpap, 2015. "The Price and Welfare Effects of Biofuel Mandates and Subsidies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 35-57, September.
    17. Whistance, Jarrett & Thompson, Wyatt & Meyer, Seth, 2017. "Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard," Energy Policy, Elsevier, vol. 101(C), pages 447-455.
    18. Christensen, Adam & Siddiqui, Sauleh, 2015. "Fuel price impacts and compliance costs associated with the Renewable Fuel Standard (RFS)," Energy Policy, Elsevier, vol. 86(C), pages 614-624.
    19. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    20. Aragie, Emerta A. & McDonald, Scott, 2014. "Semi-subsistence Farm Households and Their Implications for Policy Response," Conference papers 332537, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.