IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-04443037.html
   My bibliography  Save this paper

The Dynamic Effects of Weather Shocks on Agricultural Production

Author

Listed:
  • Cédric Crofils

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, LEDa - Laboratoire d'Economie de Dauphine - IRD - Institut de Recherche pour le Développement - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Ewen Gallic

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Gauthier Vermandel

    (LEDa - Laboratoire d'Economie de Dauphine - IRD - Institut de Recherche pour le Développement - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique, CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, Banque de France - Banque de France - Banque de France)

Abstract

This paper investigates the dynamic effects of weather shocks on monthly agricultural production in Peru, using a Local Projection framework. An adverse weather shock, measured by an excess of heat or rain, always generates a delayed negative downturn in agricultural production. The magnitude and duration of this downturn depend on several factors, including the type of crop and the timing of the shock. On average, a weather shock—a temperature shock—can cause a monthly decline of 5% to 15% in agricultural production. The response exhibit important heterogeneity across time, crop, and season dimensions, with hysteresis suggesting farmers' adaptation over time. At the macroeconomic level, weather shocks are recessionary and entail a decline in inflation, agricultural production, exports, exchange rate and GDP.

Suggested Citation

  • Cédric Crofils & Ewen Gallic & Gauthier Vermandel, 2024. "The Dynamic Effects of Weather Shocks on Agricultural Production," Post-Print halshs-04443037, HAL.
  • Handle: RePEc:hal:journl:halshs-04443037
    DOI: 10.1016/j.jeem.2024.103078
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-04443037v4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marco Letta & Pierluigi Montalbano & Guillaume Pierre, 2022. "Weather shocks, traders' expectations, and food prices," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(3), pages 1100-1119, May.
    2. Riccardo Colacito & Bridget Hoffmann & Toan Phan, 2019. "Temperature and Growth: A Panel Analysis of the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(2-3), pages 313-368, March.
    3. Ruiqing Miao & Madhu Khanna & Haixiao Huang, 2016. "Responsiveness of Crop Yield and Acreage to Prices and Climate," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 191-211.
    4. Crost, Benjamin & Duquennois, Claire & Felter, Joseph H. & Rees, Daniel I., 2018. "Climate change, agricultural production and civil conflict: Evidence from the Philippines," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 379-395.
    5. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    6. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    7. Li, Man, 2023. "Adaptation to expected and unexpected weather fluctuations: Evidence from Bangladeshi smallholder farmers," World Development, Elsevier, vol. 161(C).
    8. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    9. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    10. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Fiscal Multipliers in Recession and Expansion," NBER Chapters, in: Fiscal Policy after the Financial Crisis, pages 63-98, National Bureau of Economic Research, Inc.
    11. David Blakeslee & Ram Fishman & Veena Srinivasan, 2020. "Way Down in the Hole: Adaptation to Long-Term Water Loss in Rural India," American Economic Review, American Economic Association, vol. 110(1), pages 200-224, January.
    12. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    13. Xiaomeng Cui & Wei Xie, 2022. "Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 249-272, January.
    14. Acevedo, Sebastian & Mrkaic, Mico & Novta, Natalija & Pugacheva, Evgenia & Topalova, Petia, 2020. "The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact?," Journal of Macroeconomics, Elsevier, vol. 65(C).
    15. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    16. James Rising & Naresh Devineni, 2020. "Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    17. Anthony Louis D'Agostino & Wolfram Schlenker, 2016. "Recent weather fluctuations and agricultural yields: implications for climate change," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 159-171, November.
    18. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    19. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    20. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    21. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2021. "Climate Change and Agriculture: Subsistence Farmers' Response to Extreme Heat," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 1-35, February.
    22. Salvador Barrios & Luisito Bertinelli & Eric Strobl, 2010. "Trends in Rainfall and Economic Growth in Africa: A Neglected Cause of the African Growth Tragedy," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 350-366, May.
    23. Jerry R. Skees & Jason Hartell & Anne G. Murphy, 2007. "Using Index-Based Risk Transfer Products to Facilitate Micro Lending in Peru and Vietnam," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1255-1261.
    24. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    25. François Bareille & Raja Chakir, 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 989-1019, May.
    26. Juan Sesmero & Jacob Ricker-Gilbert & Aaron Cook, 2018. "How Do African Farm Households Respond to Changes in Current and Past Weather Patterns? A Structural Panel Data Analysis from Malawi," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 115-144.
    27. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    28. Ariel Ortiz-Bobea & Toby R. Ault & Carlos M. Carrillo & Robert G. Chambers & David B. Lobell, 2021. "Anthropogenic climate change has slowed global agricultural productivity growth," Nature Climate Change, Nature, vol. 11(4), pages 306-312, April.
    29. Maulik Jagnani & Christopher B Barrett & Yanyan Liu & Liangzhi You, 2021. "Within-Season Producer Response to Warmer Temperatures: Defensive Investments by Kenyan Farmers [Sequential decision making in production models]," The Economic Journal, Royal Economic Society, vol. 131(633), pages 392-419.
    30. Yu, Jisang & Goh, Gyuhyeong, 2019. "Estimating Non-Additive Within-Season Temperature Effects on Maize Yields Using Bayesian Approaches," SCC-76 Meeting, 2019, April 4-6, Kansas City, Missouri 288095, SCC-76: Economics and Management of Risk in Agriculture and Natural Resources.
    31. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    32. Massetti, Emanuele & Mendelsohn, Robert & Chonabayashi, Shun, 2016. "How well do degree days over the growing season capture the effect of climate on farmland values?," Energy Economics, Elsevier, vol. 60(C), pages 144-150.
    33. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
    34. Faccia, Donata & Parker, Miles & Stracca, Livio, 2021. "Feeling the heat: extreme temperatures and price stability," Working Paper Series 2626, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Annicchiarico & Cédric Crofils, 2025. "Weather Shocks and the Optimal Policy Mix in a Climate-Vulnerable Economy," Working Papers hal-04928143, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musa Hasen Ahmed & Wondimagegn Mesfin Tesfaye & Franziska Gassmann, 2023. "Early growing season weather variation, expectation formation and agricultural land allocation decisions in Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 255-272, February.
    2. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    3. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," Working Papers halshs-03420657, HAL.
    4. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," PSE Working Papers halshs-03420657, HAL.
    5. repec:ags:aaea22:335522 is not listed on IDEAS
    6. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    7. Ahmed, Musa Hasen & Tesfaye, Wondimagegn Mesfin & Gassmann, Franziska, 2022. "Within Growing Season Weather Variability and Land Allocation Decisions: Evidence from Maize Farmers in Ethiopia," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321171, Agricultural Economics Society - AES.
    8. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    9. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated agricultural sensitivity and adaptability to rising temperatures across regions and sectors in China," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    10. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    11. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    12. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    13. François Bareille & Raja Chakir, 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 989-1019, May.
    14. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    15. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    16. Jesús Arellano-González & Miriam Juárez-Torres, 2025. "Temperature and quarterly economic activity: panel data evidence from Mexico," Working Papers 2025-02, Banco de México.
    17. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    18. Desbordes, Rodolphe & Eberhardt, Markus, 2024. "Climate change and economic prosperity: Evidence from a flexible damage function," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    19. Lis-Castiblanco, Catherine & Jordi, Louis, 2024. "Adaptation to Frost and Heat Risks in French Viticulture: Are Grape Growers Dumb Farmers?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343569, Agricultural and Applied Economics Association.
    20. Li, Man, 2023. "Adaptation to expected and unexpected weather fluctuations: Evidence from Bangladeshi smallholder farmers," World Development, Elsevier, vol. 161(C).
    21. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.

    More about this item

    Keywords

    Weather shocks; Agriculture; Local projections; VAR;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-04443037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.