IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-14-07-efd.html
   My bibliography  Save this paper

Impacts of Climate Change on Agriculture: Evidence from China

Author

Listed:
  • Chen, Shuai
  • Chen, Xiaoguang
  • Xu, Jintao

    (Resources for the Future)

Abstract

We estimate the link between corn and soybean yields and weather in China, while controlling for other variables that could affect crop yields, such as socioeconomic and climate adaptation variables. We find that: (i) there are nonlinear and asymmetric relationships between corn and soybean yields and weather variables; (ii) expansion of corn and soybean production to land types not previously used for these two crops had detrimental effects on average yields for both crops; (iii) climate change led to a net economic loss of about $200 million to China’s corn and soybean sectors in the past decade; (iv) corn and soybean yields are projected to decline by 4-14% and 8-21% by 2100.

Suggested Citation

  • Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2014. "Impacts of Climate Change on Agriculture: Evidence from China," RFF Working Paper Series dp-14-07-efd, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-14-07-efd
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/EfD-DP-14-07.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thiemo Fetzer, 2014. "Can Workfare Programs Moderate Violence? Evidence from India," STICERD - Economic Organisation and Public Policy Discussion Papers Series 53, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Marc Nerlove, 1956. "Estimates of the Elasticities of Supply of Selected Agricultural Commodities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 38(2), pages 496-509.
    3. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    4. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, June.
    5. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    6. Jean-Paul Chavas & Matthew T. Holt, 1990. "Acreage Decisions Under Risk: The Case of Corn and Soybeans," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(3), pages 529-538.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    9. Braulke, Michael, 1982. "A Note on the Nerlove Model of Agricultural Supply Response," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(1), pages 241-244, February.
    10. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    11. Thiemo Fetzer, 2014. "Can Workfare Programs Moderate Violence? Evidence from India," STICERD - Economic Organisation and Public Policy Discussion Papers Series 053, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    13. Ortiz-­Bobea, Ariel, 2013. "Understanding Temperature and Moisture Interactions in the Economics of Climate Change Impacts and Adaptation on Agriculture," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150435, Agricultural and Applied Economics Association.
    14. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    15. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    16. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    17. Jikun Huang & Carl Pray & Scott Rozelle, 2002. "Enhancing the crops to feed the poor," Nature, Nature, vol. 418(6898), pages 678-684, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2013. "Impacts of Climate Change on Corn and Soybean Yields in China," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149739, Agricultural and Applied Economics Association.
    2. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    3. Shuai Chen & Xiaoguang Chen & Jintao Xu, 2016. "Assessing the impacts of temperature variations on rice yield in China," Climatic Change, Springer, vol. 138(1), pages 191-205, September.
    4. De Salvo, Maria & Raffaelli, Roberta & Moser, Riccarda, 2013. "The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis," Agricultural Systems, Elsevier, vol. 118(C), pages 23-32.
    5. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    6. Attavanich, Witsanu, 2017. "Effect of climate change on Thailand’s agriculture: New results," MPRA Paper 118290, University Library of Munich, Germany.
    7. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    8. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.
    9. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    10. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    11. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    12. Massetti, Emanuele & Mendelsohn, Robert & Chonabayashi, Shun, 2016. "How well do degree days over the growing season capture the effect of climate on farmland values?," Energy Economics, Elsevier, vol. 60(C), pages 144-150.
    13. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    14. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    15. Attavanich, Witsanu, 2013. "The Effect of Climate Change on Thailand’s Agriculture," MPRA Paper 84005, University Library of Munich, Germany, revised Feb 2014.
    16. Subhadra Banda, 2013. "The Case of Slum Rehabilitation in Delhi," Working Papers id:5522, eSocialSciences.
    17. Emanuele Massetti & Robert Mendelsohn, 2020. "Temperature thresholds and the effect of warming on American farmland value," Climatic Change, Springer, vol. 161(4), pages 601-615, August.
    18. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    19. Babatunde O. Abidoye & Pradeep Kurukulasuriya & Brian Reed & Robert Mendelsohn, 2017. "Structural Ricardian Analysis Of South-East Asian Agriculture," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 1-17, August.
    20. Sayed Morteza Malaekeh & Layla Shiva & Ammar Safaie, 2024. "Investigating the economic impact of climate change on agriculture in Iran: Spatial spillovers matter," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 433-453, May.

    More about this item

    Keywords

    climate; China; corn; soybean; yields; land;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-14-07-efd. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.