IDEAS home Printed from https://ideas.repec.org/p/ags/feemei/257878.html
   My bibliography  Save this paper

A Ricardian Analysis of the Impact of Climate Change on Italian Agriculture

Author

Listed:
  • Martina Bozzola
  • Emanuele Massetti
  • Robert Mendelsohn
  • Fabian Capitanio

Abstract

This research investigates the potential impact of warming on Italian agriculture. Using a detailed dataset of 16,000 farms across Italy, the study examines likely warming impacts in different regions and for different sectors of Italian agriculture. The study finds that farm net revenues are very sensitive to seasonal changes in temperature and precipitation. Livestock and crop farms have different responses to climate as do rain-fed farms and irrigated farms. The overall results suggest mild consequences from marginal changes in climate but increasingly harmful effects from more severe climate scenarios.

Suggested Citation

  • Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2017. "A Ricardian Analysis of the Impact of Climate Change on Italian Agriculture," EIA: Climate Change: Economic Impacts and Adaptation 257878, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemei:257878
    DOI: 10.22004/ag.econ.257878
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/257878/files/NDL2017-023.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.257878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas Chatzopoulos & Christian Lippert, 2015. "Adaptation and Climate Change Impacts: A Structural Ricardian Analysis of Farm Types in Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(2), pages 537-554, June.
    2. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    3. Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2008. "A Ricardian analysis of the impact of climate change on African cropland," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-23, March.
    4. Guenter Lang, 1999. "Global Warming and German Agriculture," Discussion Paper Series 185, Universitaet Augsburg, Institute for Economics.
    5. Seo, S. Niggol & Mendelsohn, Robert, 2008. "Animal husbandry in Africa: Climate change impacts and adaptations," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-18, March.
    6. Ariel Dinar & Robert Mendelsohn (ed.), 2011. "Handbook on Climate Change and Agriculture," Books, Edward Elgar Publishing, number 13942.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2008. "Crop switching as a strategy for adapting to climate change," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-22, March.
    9. Pradeep Kurukulasuriya & Namrata Kala & Robert Mendelsohn, 2011. "Adaptation And Climate Change Impacts: A Structural Ricardian Model Of Irrigation And Farm Income In Africa," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 149-174.
    10. Ricardo, David, 1821. "On the Principles of Political Economy and Taxation," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, edition 3, number ricardo1821.
    11. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    12. S. Niggol Seo & Robert Mendelsohn, 2008. "Measuring impacts and adaptations to climate change: a structural Ricardian model of African livestock management-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 151-165, March.
    13. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    14. Thomas Chatzopoulos & Christian Lippert, 2016. "Endogenous farm-type selection, endogenous irrigation, and spatial effects in Ricardian models of climate change," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 43(2), pages 217-235.
    15. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    16. Ana Iglesias & Sonia Quiroga & Marta Moneo & Luis Garrote, 2012. "From climate change impacts to the development of adaptation strategies: Challenges for agriculture in Europe," Climatic Change, Springer, vol. 112(1), pages 143-168, May.
    17. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    18. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    19. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    20. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang, 2010. "How Chinese Farmers Change Crop Choice To Adapt To Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 167-185.
    21. D Maddison, 2000. "A hedonic analysis of agricultural land prices in England and Wales," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 27(4), pages 519-532, December.
    22. De Salvo, Maria & Raffaelli, Roberta & Moser, Riccarda, 2013. "The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis," Agricultural Systems, Elsevier, vol. 118(C), pages 23-32.
    23. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    24. Mela, Giulio & Longhitano, Davide & Povellato, Andrea, 2012. "The evolution of land values in Italy. Does the influence of agricultural prices really matter?," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122479, European Association of Agricultural Economists.
    25. Massetti, Emanuele & Mendelsohn, Robert & Chonabayashi, Shun, 2016. "How well do degree days over the growing season capture the effect of climate on farmland values?," Energy Economics, Elsevier, vol. 60(C), pages 144-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DePaula, Guilherme, 2020. "The distributional effect of climate change on agriculture: Evidence from a Ricardian quantile analysis of Brazilian census data," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    2. Chancellor, Will & Hughes, Neal & Zhao, Shiji & Soh, Wei Ying & Valle, Haydn & Boult, Christopher, 2021. "Controlling for the effects of climate on total factor productivity: A case study of Australian farms," Food Policy, Elsevier, vol. 102(C).
    3. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, Open Access Journal, vol. 12(23), pages 1-24, November.
    4. Orlińska-Woźniak, Paulina & Wilk, Paweł & Szalińska, Ewa, 2020. "Delimitation of nutrient vulnerable zones - a comprehensive method to manage a persistent problem of agriculture," Agricultural Systems, Elsevier, vol. 183(C).
    5. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    6. Wei Jiang & Bojie Fu & Yihe Lü, 2020. "Assessing Impacts of Land Use/Land Cover Conversion on Changes in Ecosystem Services Value on the Loess Plateau, China," Sustainability, MDPI, Open Access Journal, vol. 12(17), pages 1-26, September.
    7. Slaboch, Josef & Čechura, Lukáš, 2020. "Land Pricing Model: Price Re-evaluation Due to the Erosion and Climate Change Effects," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(3), December.
    8. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    9. Mosavi, Seyed Habibollah & Soltani, Shiva & Khalilian, Sadegh, 2020. "Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Sabrina Auci & Nicolò Barbieri & Manuela Coromaldi & Donatella Vignani, 2021. "Innovation for climate change adaptation and technical efficiency: an empirical analysis in the European agricultural sector," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 597-623, July.
    11. Janka Vanschoenwinkel & Steven Passel, 2018. "Climate response of rainfed versus irrigated farms: the bias of farm heterogeneity in irrigation," Climatic Change, Springer, vol. 147(1), pages 225-234, March.
    12. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    13. Moretti, Michele & Vanschoenwinkel, Janka & Van Passel, Steven, 2021. "Accounting for externalities in cross-sectional economic models of climate change impacts," Ecological Economics, Elsevier, vol. 185(C).
    14. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 47(3), pages 1276-1301.
    15. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    16. Uthpal Kumar & Saskia Werners & Sharmishtha Roy & Sadia Ashraf & Long Phi Hoang & Dilip Kumar Datta & Fulco Ludwig, 2020. "Role of Information in Farmers’ Response to Weather and Water Related Stresses in the Lower Bengal Delta, Bangladesh," Sustainability, MDPI, Open Access Journal, vol. 12(16), pages 1-24, August.
    17. Federico Martinelli & Francisco Javier Ollero & Antonio Giovino & Anna Perrone & Abdelkader Bekki & Sanja Sikora & Rania El Nabbout & Mariem Bouhadida & Derya Yucel & Marco Bazzicalupo & Alessio Mengo, 2020. "Proposed Research for Innovative Solutions for Chickpeas and Beans in a Climate Change Scenario: The Mediterranean Basin," Sustainability, MDPI, Open Access Journal, vol. 12(4), pages 1-16, February.
    18. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 48(3), pages 477-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    2. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    3. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics Working Papers 2015-20, University of Adelaide, School of Economics.
    4. De Salvo, Maria & Raffaelli, Roberta & Moser, Riccarda, 2013. "The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis," Agricultural Systems, Elsevier, vol. 118(C), pages 23-32.
    5. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    6. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    7. Massetti, Emanuele & Mendelsohn, Robert, 2017. "Do Temperature Thresholds Threaten American Farmland?," EIA: Climate Change: Economic Impacts and Adaptation 263482, Fondazione Eni Enrico Mattei (FEEM).
    8. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    9. Frederick Quaye & Denis Nadolnyak & Valentina Hartarska, 2018. "Climate Change Impacts on Farmland Values in the Southeast United States," Sustainability, MDPI, Open Access Journal, vol. 10(10), pages 1-16, September.
    10. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    11. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    12. Prince Etwire & David Fielding & Victoria Kahui, 2017. "The impact of climate change on crop production in Ghana: A Structural Ricardian analysis," Working Papers 1706, University of Otago, Department of Economics, revised Apr 2017.
    13. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.
    14. Fabian Capitanio & Salvatore Di Falco & Raffaella Zucaro & David Zilberman, 2015. "Italian Agriculture in the Context of Climate Change: The Role of Irrigation for Sustainable Development of Rural Areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2015(2), pages 131-152.
    15. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    16. Henderson, J. Vernon & Storeygard, Adam & Deichmann, Uwe, 2017. "Has climate change driven urbanization in Africa?," Journal of Development Economics, Elsevier, vol. 124(C), pages 60-82.
    17. S. Seo & Robert Mendelsohn & Ariel Dinar & Rashid Hassan & Pradeep Kurukulasuriya, 2009. "A Ricardian Analysis of the Distribution of Climate Change Impacts on Agriculture across Agro-Ecological Zones in Africa," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 313-332, July.
    18. Etienne ESPAGNE & Yoro DIALLO & Sébastien MARCHAND, 2019. "Impacts of Extreme Climate Events on Technical Efficiency in Vietnamese Agriculture," Working Paper c1221ee7-5311-4af0-b1b4-3, Agence française de développement.
    19. Moretti, Michele & Vanschoenwinkel, Janka & Van Passel, Steven, 2021. "Accounting for externalities in cross-sectional economic models of climate change impacts," Ecological Economics, Elsevier, vol. 185(C).
    20. Qi, Lingqiao & Bravo-Ureta, Boris E. & Cabrera, Victor E., 2014. "From Cold To Hot: A Preliminary Analysis Of Climatic Effects On The Productivity Of Wisconsin Dairy Farms," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172411, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Environmental Economics and Policy;

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemei:257878. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.