IDEAS home Printed from https://ideas.repec.org/p/aug/augsbe/0185.html
   My bibliography  Save this paper

Global Warming and German Agriculture

Author

Abstract

This study uses the concept of shadow prices for measuring the impacts of climate change. Estimation of a restricted profit function rather than a cost or a production function increases the explanatory power of the agroclimate approach because of an endogenous output structure. Using micro-based panel data on Western German farmers, the results im-ply that the agricul-tural production process is significantly influenced by climate conditions. By linking this model with a climate-change scenario, a remarkable positive shadow value is found for the German agricultural sector. Interestingly, the spatial distribution of the gains shows no concentration on those regions, which currently suffer from insufficient temperature. Finally, the importance of an endogenous output structure is confirmed by the finding that the de-sired product mix will drastically change.

Suggested Citation

  • Guenter Lang, 1999. "Global Warming and German Agriculture," Discussion Paper Series 185, Universitaet Augsburg, Institute for Economics.
  • Handle: RePEc:aug:augsbe:0185
    as

    Download full text from publisher

    File URL: https://vwl.wiwi.uni-augsburg.de/vwl/institut/paper/185.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Livernois, John R & Ryan, David L, 1989. "Testing for Non-jointness in Oil and Gas Exploration: A Variable Profit Function Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(2), pages 479-504, May.
    2. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    3. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, October.
    4. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    5. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    6. Dixon, Bruce L. & Hollinger, Steven E. & Garcia, Philip & Tirupattur, Viswanath, 1994. "Estimating Corn Yield Response Models To Predict Impacts Of Climate Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 19(1), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    2. Colin R. Jackson & Bram W. G. Stone & Heather L. Tyler, 2015. "Emerging Perspectives on the Natural Microbiome of Fresh Produce Vegetables," Agriculture, MDPI, vol. 5(2), pages 1-18, April.
    3. Molinos-Senante, María & Hanley, Nick & Sala-Garrido, Ramón, 2015. "Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach," Applied Energy, Elsevier, vol. 144(C), pages 241-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Günter Lang, 2001. "Global Warming and German Agriculture Impact Estimations Using a Restricted Profit Function," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 97-112, June.
    2. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    3. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Determinants of Agricultural Output: Degree Days, Yields and Implications for Climate Change," 2005 Annual meeting, July 24-27, Providence, RI 19222, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Guenter Lang, 2003. "Land Prices and Climate Conditions - Evaluating the Greenhouse Damage for the German Agricultural Sector," Discussion Paper Series 233, Universitaet Augsburg, Institute for Economics.
    5. Hall, Darwin C., 1997. "Impacts of Global Warming on Agriculture," 1997 Conference, August 10-16, 1997, Sacramento, California 197040, International Association of Agricultural Economists.
    6. Seo, Niggol & Mendelsohn, Robert & Dinar, Ariel & Kurukulasuriya, Pradeep & Hassan, Rashid, 2008. "Long-term adaptation : selecting farm types across agro-ecological zones in Africa," Policy Research Working Paper Series 4602, The World Bank.
    7. Joshi, Niraj Prakash & Maharjan, Keshav Lall & Piya, Luni, 2011. "Effect of climate variables on yield of major food-crops in Nepal -A time-series analysis-," MPRA Paper 35379, University Library of Munich, Germany.
    8. Kolstad, Charles D. & Toman, Michael, 2005. "The Economics of Climate Policy," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 30, pages 1561-1618, Elsevier.
    9. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    10. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    11. Ariste, Ruolz & Lasserre, Pierre, 2001. "La gestion optimale d’une forêt exploitée pour son potentiel de diminution des gaz à effet de serre et son bois," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(1), pages 27-51, mars.
    12. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    13. Fisher, Anthony, 2014. "Climate Science and Climate Economics," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt746627gz, Department of Agricultural & Resource Economics, UC Berkeley.
    14. Moniruzzaman, Shaikh, 2015. "Crop choice as climate change adaptation: Evidence from Bangladesh," Ecological Economics, Elsevier, vol. 118(C), pages 90-98.
    15. Sohngen, Brent & Sedjo, Roger A. & Mendelsohn, Robert & Lyon, Kenneth S., 1996. "Analyzing the Economic Impact of Climate Change on Global Timber Markets," Discussion Papers 10462, Resources for the Future.
    16. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    17. Jesse Tack & Andrew Barkley & Lawton Nalley, 2014. "Heterogeneous effects of warming and drought on selected wheat variety yields," Climatic Change, Springer, vol. 125(3), pages 489-500, August.
    18. Randhir, Timothy O. & Hertel, Thomas W., 2000. "Trade Liberalization as a Vehicle for Adapting to Global Warming," Agricultural and Resource Economics Review, Cambridge University Press, vol. 29(2), pages 159-172, October.
    19. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    20. Dixon, Bruce L. & Segerson, Kathleen, 1999. "Impacts of Increased Climate Variability on the Profitability of Midwest Agriculture," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 31(3), pages 537-549, December.

    More about this item

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aug:augsbe:0185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Simone Raab-Kratzmeier (email available below). General contact details of provider: https://edirc.repec.org/data/ivaugde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.