IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v19y2001i2p97-112.html
   My bibliography  Save this article

Global Warming and German Agriculture Impact Estimations Using a Restricted Profit Function

Author

Listed:
  • Günter Lang

    ()

Abstract

This study uses the concept of shadow prices formeasuring the impacts of climate change. By estimatinga restricted profit function rather than a cost or aproduction function the explanatory power of the modelis increased because of an endogenous outputstructure. Using low aggregated panel data on WesternGerman farmers, the results imply that the agricultural production process is significantly influenced by climate conditions. Simulation results using a 2 ×CO 2 climate scenario show positive impactsfor all regions in Germany. Interestingly, the spatialdistribution of the gains is indicating no advantagefor those regions, which currently suffer frominsufficient temperature. Finally, the importance ofan endogenous output structure is confirmed by thefinding that the desired product mix will drasticallychange. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • Günter Lang, 2001. "Global Warming and German Agriculture Impact Estimations Using a Restricted Profit Function," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 97-112, June.
  • Handle: RePEc:kap:enreec:v:19:y:2001:i:2:p:97-112
    DOI: 10.1023/A:1011178931639
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1011178931639
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Livernois, John R & Ryan, David L, 1989. "Testing for Non-jointness in Oil and Gas Exploration: A Variable Profit Function Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(2), pages 479-504, May.
    2. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    3. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, May.
    4. Kolstad, Charles D. & Kelly, David L. & Mitchell, Glenn, 1999. "Adjustment Costs from Environmental Change Induced by Incomplete Information and Learning," University of California at Santa Barbara, Economics Working Paper Series qt9mx119gc, Department of Economics, UC Santa Barbara.
    5. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    6. Reilly, John & Hohmann, Neil, 1993. "Climate Change and Agriculture: The Role of International Trade," American Economic Review, American Economic Association, vol. 83(2), pages 306-312, May.
    7. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    8. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    9. repec:cdl:ucsbec:10-99 is not listed on IDEAS
    10. Dixon, Bruce L. & Hollinger, Steven E. & Garcia, Philip & Tirupattur, Viswanath, 1994. "Estimating Corn Yield Response Models To Predict Impacts Of Climate Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 19(1), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajapaksha P. D. Gunathilaka & James C. R. Smart & Christopher M. Fleming & Syezlin Hasan, 2018. "The impact of climate change on labour demand in the plantation sector: the case of tea production in Sri Lanka," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 480-500, July.
    2. Denisard Alves & Paula Pereda, 2019. "Climate and Weather Impacts on Agriculture: The Case of Brazil," Working Papers, Department of Economics 2019_23, University of São Paulo (FEA-USP).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guenter Lang, 1999. "Global Warming and German Agriculture," Discussion Paper Series 185, Universitaet Augsburg, Institute for Economics.
    2. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    3. Winters, Paul C. & Murgai, Rinku & Sadoulet, Elisabeth & de Janvry, Alain, 1996. "Climate Change, Agriculture, And Developing Economies," CUDARE Working Papers 25079, University of California, Berkeley, Department of Agricultural and Resource Economics.
    4. Paul Winters & Rinku Murgai & Elisabeth Sadoulet & Alain de Janvry & George Frisvold, 1998. "Economic and Welfare Impacts of Climate Change on Developing Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 1-24, July.
    5. Seo, S. Niggol, 2010. "Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture," Food Policy, Elsevier, vol. 35(1), pages 32-40, February.
    6. Wolfram Schlenker & Michael J. Roberts, 2008. "Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects," NBER Working Papers 13799, National Bureau of Economic Research, Inc.
    7. Guenter Lang, 2003. "Land Prices and Climate Conditions - Evaluating the Greenhouse Damage for the German Agricultural Sector," Discussion Paper Series 233, Universitaet Augsburg, Institute for Economics.
    8. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Determinants of Agricultural Output: Degree Days, Yields and Implications for Climate Change," 2005 Annual meeting, July 24-27, Providence, RI 19222, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Seo, Niggol & Mendelsohn, Robert & Dinar, Ariel & Kurukulasuriya, Pradeep & Hassan, Rashid, 2008. "Long-term adaptation : selecting farm types across agro-ecological zones in Africa," Policy Research Working Paper Series 4602, The World Bank.
    10. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    11. Seo, Sungno Niggol & Mendelsohn, Robert, 2007. "Climate change adaptation in Africa : a microeconomic analysis of livestock choice," Policy Research Working Paper Series 4277, The World Bank.
    12. Joshi, Niraj Prakash & Maharjan, Keshav Lall & Piya, Luni, 2011. "Effect of climate variables on yield of major food-crops in Nepal -A time-series analysis-," MPRA Paper 35379, University Library of Munich, Germany.
    13. Baylis, Katherine R. & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(3), pages 1-14, August.
    14. Zeynep K. Hansen & Gary D. Libecap & Scott E. Lowe, 2011. "Climate Variability and Water Infrastructure: Historical Experience in the Western United States," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 253-280, National Bureau of Economic Research, Inc.
    15. Ariste, Ruolz & Lasserre, Pierre, 2001. "La gestion optimale d’une forêt exploitée pour son potentiel de diminution des gaz à effet de serre et son bois," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(1), pages 27-51, mars.
    16. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    17. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics Working Papers 2015-20, University of Adelaide, School of Economics.
    18. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    19. Sohngen, Brent & Sedjo, Roger A. & Mendelsohn, Robert & Lyon, Kenneth S., 1996. "Analyzing the Economic Impact of Climate Change on Global Timber Markets," Discussion Papers 10462, Resources for the Future.
    20. Fisher, Anthony, 2009. "Climate Change and Agriculture Reconsidered," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt33v2d7vc, Department of Agricultural & Resource Economics, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:19:y:2001:i:2:p:97-112. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.