IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v93y2017i4p631-653.html
   My bibliography  Save this article

Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation

Author

Listed:
  • Dale T. Manning
  • Christopher Goemans
  • Alexander Maas

Abstract

Climate change is predicted to bring changes in weather and water availability. The effect on agriculture depends on the ability of producers to modify their practices in response to changing distributions. We develop a two-stage theoretical model of planting and irrigation decisions and use a unique dataset to empirically estimate how producers respond to changes in expected water availability and deviations from expectations. As water supplies decrease, producers respond by planting fewer acres and concentrating the application of water. Highlighting the importance of adaptation in this context, failure to account for this behavioral response overstates climate change impacts by 17%.

Suggested Citation

  • Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
  • Handle: RePEc:uwp:landec:v:93:y:2017:i:4:p:631-653
    Note: DOI: 10.3368/le.93.4.631
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/93/4/631
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Goodman, D. Jay, 2000. "More Reservoirs Or Transfers? A Computable General Equilibrium Analysis Of Projected Water Shortages In The Arkansas River Basin," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-16, December.
    2. Cai, Ruohong & Feng, Shuaizhang & Oppenheimer, Michael & Pytlikova, Mariola, 2016. "Climate variability and international migration: The importance of the agricultural linkage," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 135-151.
    3. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Emanuele Massetti & Robert Mendelsohn, 2011. "Estimating Ricardian Models With Panel Data," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 301-319.
    5. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    6. Peter Berck & Gloria Helfand, 1990. "Reconciling the von Liebig and Differentiable Crop Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 985-996.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    9. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    10. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    11. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    12. Ortiz-­Bobea, Ariel, 2013. "Understanding Temperature and Moisture Interactions in the Economics of Climate Change Impacts and Adaptation on Agriculture," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150435, Agricultural and Applied Economics Association.
    13. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    14. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    15. Ariel Ortiz-Bobea & Richard E. Just, 2013. "Modeling the Structure of Adaptation in Climate Change Impact Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 244-251.
    16. Shuaizhang Feng & Michael Oppenheimer & Wolfram Schlenker, 2012. "Climate Change, Crop Yields, and Internal Migration in the United States," NBER Working Papers 17734, National Bureau of Economic Research, Inc.
    17. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    18. Robert Mendelsohn & Ariel Dinar, 2003. "Climate, Water, and Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 328-341.
    19. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wallander, Steven & Hrozencik, Aaron & Aillery, Marcel, 2022. "Irrigation Organizations: Drought Planning and Response," USDA Miscellaneous 316790, United States Department of Agriculture.
    2. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    3. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    4. Jordan, Cristian & Donoso, Guillermo & Speelman, Stijn, 2021. "Measuring the effect of improved irrigation technologies on irrigated agriculture. A study case in Central Chile," Agricultural Water Management, Elsevier, vol. 257(C).
    5. Ahmed, Musa Hasen & Tesfaye, Wondimagegn Mesfin & Gassmann, Franziska, 2022. "Within Growing Season Weather Variability and Land Allocation Decisions: Evidence from Maize Farmers in Ethiopia," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321171, Agricultural Economics Society - AES.
    6. Maas, Alexander S. & McIntosh, Christopher S. & Fuller, Kate B., 2022. "An Exploration of Preferences for Soil Health Practices in Potato Production," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322072, Agricultural and Applied Economics Association.
    7. Maas, Alexander S. & Lu, Liang, 2020. "“Elections have Consequences”: Partisan Politics are Literally Killing Us," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304457, Agricultural and Applied Economics Association.
    8. Smith, Sarah, 2022. "Doing More with Less: Margins of Response to Water Scarcity in Californian Irrigated Agriculture," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322378, Agricultural and Applied Economics Association.
    9. Musa Hasen Ahmed & Wondimagegn Mesfin Tesfaye & Franziska Gassmann, 2023. "Early growing season weather variation, expectation formation and agricultural land allocation decisions in Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 255-272, February.
    10. Xinde Ji & Kelly M. Cobourn, 2021. "Weather Fluctuations, Expectation Formation, and Short-Run Behavioral Responses to Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 77-119, January.
    11. Jian Shi & JunJie Wu & Beau Olen, 2022. "Impacts of climate and weather on irrigation technology adoption and agricultural water use in the U.S. pacific northwest," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 387-406, May.
    12. Wallander, Steven & Hrozencik, Aaron & Aillery, Marcel, 2022. "Irrigation Organizations: Drought Planning and Response," Economic Brief 327233, United States Department of Agriculture, Economic Research Service.
    13. Sarah E. Anderson & Terry L. Anderson & Alice C. Hill & Matthew E. Kahn & Howard Kunreuther & Gary D. Libecap & Hari Mantripragada & Pierre Mérel & Andrew J. Plantinga & V. Kerry Smith, 2019. "The Critical Role Of Markets In Climate Change Adaptation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-17, February.
    14. Ghosh, Prasenjit & Miao, Ruiqing, 2018. "Agricultural Irrigation’s Responses to Federal Crop Insurance in the United States," 2018 Annual Meeting, August 5-7, Washington, D.C. 275667, Agricultural and Applied Economics Association.
    15. Danyelle Branco & José Féres, 2021. "Weather Shocks and Labor Allocation: Evidence from Rural Brazil," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1359-1377, August.
    16. Kelly M. Cobourn & Xinde Ji & Siân Mooney & Neil F. Crescenti, 2022. "The effect of prior appropriation water rights on land‐allocation decisions in irrigated agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(3), pages 947-975, May.
    17. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    18. Ahmed, Musa Hasen & Tesfaye, Wondimagegn & Stephan, Dietrich & Gassmann, Franziska, 2021. "Within Growing Season Weather Variability and Adaptation in Agriculture: Evidence from Cropping Patterns of Ethiopia," 2021 Conference, August 17-31, 2021, Virtual 315056, International Association of Agricultural Economists.
    19. Deines, Jillian M. & Schipanski, Meagan E. & Golden, Bill & Zipper, Samuel C. & Nozari, Soheil & Rottler, Caitlin & Guerrero, Bridget & Sharda, Vaishali, 2020. "Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts," Agricultural Water Management, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    2. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    3. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    4. Chen, Zhangliang & Dall'Erba, Sandy, 2018. "Do crop insurance programs preclude their recipients from adapting to new climate conditions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274398, Agricultural and Applied Economics Association.
    5. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    6. Arisha Ashraf & Ariel Dinar & Érika Monteiro & Todd Gaston, 2016. "Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-19, May.
    7. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    8. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    9. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    10. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    11. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    12. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    13. Etienne ESPAGNE & Yoro DIALLO & Sébastien MARCHAND, 2019. "Impacts of Extreme Climate Events on Technical Efficiency in Vietnamese Agriculture," Working Paper c1221ee7-5311-4af0-b1b4-3, Agence française de développement.
    14. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    15. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    16. Auffhammer, Maximilian & Schlenker, Wolfram, 2014. "Empirical studies on agricultural impacts and adaptation," Energy Economics, Elsevier, vol. 46(C), pages 555-561.
    17. Frijters, Paul & Lalji, Chitwan & Pakrashi, Debayan, 2020. "Daily weather only has small effects on wellbeing in the US," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 747-762.
    18. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    19. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    20. Sampson, Gabriel & Hendricks, Nathan P. & Taylor, Mykel R., 2018. "Land Market Valuation of Groundwater Availability," 2018 Annual Meeting, August 5-7, Washington, D.C. 274320, Agricultural and Applied Economics Association.

    More about this item

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:93:y:2017:i:4:p:631-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.