IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v28y2022ics2405851321000738.html
   My bibliography  Save this article

Common factors and the dynamics of cereal prices. A forecasting perspective

Author

Listed:
  • Kwas, Marek
  • Paccagnini, Alessia
  • Rubaszek, Michał

Abstract

This article investigates what determines the price dynamics of the main cereals: barley, maize, rice and wheat. Using an extensive dataset of monthly time series covering the years 1980–2019, we extract four different common factors explaining the dynamics of commodity prices, exchange rates, financial and macroeconomic indicators. Next, we examine whether these factors are useful in explaining the movements of cereal prices. We show that models incorporating all four factors outperform significantly the naive random walk model in out-of-sample forecasting competition, especially for longer horizons. However, they have only marginally better performance than a simpler model based on the commodity factor alone.

Suggested Citation

  • Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2022. "Common factors and the dynamics of cereal prices. A forecasting perspective," Journal of Commodity Markets, Elsevier, vol. 28(C).
  • Handle: RePEc:eee:jocoma:v:28:y:2022:i:c:s2405851321000738
    DOI: 10.1016/j.jcomm.2021.100240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851321000738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2021.100240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    2. Marco Lombardi & Chiara Osbat & Bernd Schnatz, 2012. "Global commodity cycles and linkages: a FAVAR approach," Empirical Economics, Springer, vol. 43(2), pages 651-670, October.
    3. Fretheim, Torun, 2019. "An empirical analysis of the correlation between large daily changes in grain and oil futures prices," Journal of Commodity Markets, Elsevier, vol. 14(C), pages 66-75.
    4. Jan J. J. Groen & Paolo A. Pesenti, 2011. "Commodity Prices, Commodity Currencies, and Global Economic Developments," NBER Chapters, in: Commodity Prices and Markets, pages 15-42, National Bureau of Economic Research, Inc.
    5. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    6. Derek Bunn, Julien Chevallier, Yannick Le Pen, and Benoit Sevi, 2017. "Fundamental and Financial Influences on the Co-movement of Oil and Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Shu-Ling Chen & John D. Jackson & Hyeongwoo Kim & Pramesti Resiandini, 2014. "What Drives Commodity Prices?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1455-1468.
    9. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    10. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    11. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    12. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015. "What Drives Oil Prices? Emerging Versus Developed Economies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
    13. Ohashi, Kazuhiko & Okimoto, Tatsuyoshi, 2016. "Increasing trends in the excess comovement of commodity prices," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 48-64.
    14. Byrne, Joseph P. & Fazio, Giorgio & Fiess, Norbert, 2013. "Primary commodity prices: Co-movements, common factors and fundamentals," Journal of Development Economics, Elsevier, vol. 101(C), pages 16-26.
    15. Zagaglia, Paolo, 2010. "Macroeconomic factors and oil futures prices: A data-rich model," Energy Economics, Elsevier, vol. 32(2), pages 409-417, March.
    16. Cummins, Mark & Dowling, Michael & Kearney, Fearghal, 2016. "Oil market modelling: A comparative analysis of fundamental and latent factor approaches," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 211-218.
    17. Kagraoka, Yusho, 2016. "Common dynamic factors in driving commodity prices: Implications of a generalized dynamic factor model," Economic Modelling, Elsevier, vol. 52(PB), pages 609-617.
    18. Alquist, Ron & Bhattarai, Saroj & Coibion, Olivier, 2020. "Commodity-price comovement and global economic activity," Journal of Monetary Economics, Elsevier, vol. 112(C), pages 41-56.
    19. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    20. Berna Karali & Scott H. Irwin & Olga Isengildina‐Massa, 2020. "Supply Fundamentals and Grain Futures Price Movements," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 548-568, March.
    21. Jesus Crespo Cuaresma & Jaroslava Hlouskova & Michael Obersteiner, 2018. "Fundamentals, speculation or macroeconomic conditions? Modelling and forecasting Arabica coffee prices," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(4), pages 583-615.
    22. West, Kenneth D. & Wong, Ka-Fu, 2014. "A factor model for co-movements of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 289-309.
    23. LeSage, James P, 1990. "A Comparison of the Forecasting Ability of ECM and VAR Models," The Review of Economics and Statistics, MIT Press, vol. 72(4), pages 664-671, November.
    24. Allen, P. Geoffrey, 1994. "Economic forecasting in agriculture," International Journal of Forecasting, Elsevier, vol. 10(1), pages 81-135, June.
    25. Adusei Jumah & Robert M. Kunst, 2008. "Seasonal prediction of European cereal prices: good forecasts using bad models?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 391-406.
    26. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    27. Luciano Gutierrez, 2013. "Speculative bubbles in agricultural commodity markets-super- †," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 40(2), pages 217-238, March.
    28. Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
    29. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    30. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    31. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    32. William G. Tomek, 1997. "Commodity Futures Prices as Forecasts," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 19(1), pages 23-44.
    33. Kuo, Chen-Yin, 2016. "Does the vector error correction model perform better than others in forecasting stock price? An application of residual income valuation theory," Economic Modelling, Elsevier, vol. 52(PB), pages 772-789.
    34. Kyriazi, Foteini & Thomakos, Dimitrios D. & Guerard, John B., 2019. "Adaptive learning forecasting, with applications in forecasting agricultural prices," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1356-1369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Caporin & C. Vladimir Rodríguez-Caballero & Esther Ruiz, 2024. "The factor structure of exchange rates volatility: global and intermittent factors," Empirical Economics, Springer, vol. 67(1), pages 31-45, July.
    2. Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    4. Joseph P Byrne & Ryuta Sakemoto & Bing Xu, 2020. "Commodity price co-movement: heterogeneity and the time-varying impact of fundamentals [Oil price shocks and the stock market: evidence from Japan]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 499-528.
    5. Dudda, Tom L. & Klein, Tony & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Common Drivers of Commodity Futures?," QBS Working Paper Series 2022/05, Queen's University Belfast, Queen's Business School.
    6. Rubaszek, Michał, 2021. "Forecasting crude oil prices with DSGE models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
    7. Matsumoto, Akito & Pescatori, Andrea & Wang, Xueliang, 2023. "Commodity prices and global economic activity," Japan and the World Economy, Elsevier, vol. 66(C).
    8. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Xia, Tian & Zhou, Hang, 2023. "Commodity terms of trade co-movement: Global and regional factors," Journal of International Money and Finance, Elsevier, vol. 139(C).
    10. Chen, Peng, 2015. "Global oil prices, macroeconomic fundamentals and China's commodity sector comovements," Energy Policy, Elsevier, vol. 87(C), pages 284-294.
    11. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    12. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    13. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    14. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    16. Dalibor Stevanovic & Rachidi Kotchoni & Maxime Leroux, 2017. "Forecasting economic activity in data-rich environment," CIRANO Working Papers 2017s-05, CIRANO.
    17. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    18. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    19. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    20. Byrne, Joseph P. & Ibrahim, Boulis Maher & Sakemoto, Ryuta, 2019. "Carry trades and commodity risk factors," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 121-129.

    More about this item

    Keywords

    Cereal prices; Forecasting; Factor models; Autoregressive models;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:28:y:2022:i:c:s2405851321000738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.