IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Macroeconomic Factors and Oil Futures Prices: A Data-Rich Model

I study the dynamics of oil futures prices in the NYMEX using a large panel dataset that includes global macroeconomic indicators, financial market indices, quantities and prices of energy products. I extract common factors from these series and estimate a Factor-Augmented Vector Autoregression for the maturity structure of oil futures prices. I find that latent factors generate information that, once combined with that of the yields, improves the forecasting performance for oil prices. Furthermore, I show that a factor correlated to purely financial developments contributes to the model performance, in addition to factors related to energy quantities and prices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www2.ne.su.se/paper/wp09_07.pdf
Download Restriction: no

Paper provided by Stockholm University, Department of Economics in its series Research Papers in Economics with number 2009:7.

as
in new window

Length: 27 pages
Date of creation: 10 Feb 2009
Date of revision:
Handle: RePEc:hhs:sunrpe:2009_0007
Contact details of provider: Postal:
Department of Economics, Stockholm, S-106 91 Stockholm, Sweden

Phone: +46 8 16 20 00
Fax: +46 8 16 14 25
Web page: http://www.ne.su.se/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," Review of Economic Studies, Oxford University Press, vol. 63(3), pages 435-463.
  2. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  3. Schwartz, Eduardo S, 1997. " The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-73, July.
  4. Alquist, Ron & Kilian, Lutz, 2007. "What Do We Learn from the Price of Crude Oil Futures?," CEPR Discussion Papers 6548, C.E.P.R. Discussion Papers.
  5. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  6. Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013. "The Fundamentals of Commodity Futures Returns," Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
  7. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
  8. Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
  9. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
  10. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, July.
  11. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
  12. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
  13. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
  14. Gibson, Rajna & Schwartz, Eduardo S, 1990. " Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-76, July.
  15. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-69, June.
  16. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-74, January.
  17. Brousseau, Vincent & Scacciavillani, Fabio, 1999. "A global hazard index for the world foreign exchange markets," Working Paper Series 0001, European Central Bank.
  18. Jaime Casassus & Pierre Collin-Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
  19. Ben S. Bernanke, 2008. "Semiannual monetary policy report to the Congress: testimony before the Committee on Banking, Housing, and Urban Affairs, U.S. Senate, February 28, 2008," Speech 363, Board of Governors of the Federal Reserve System (U.S.).
  20. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:sunrpe:2009_0007. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sten Nyberg)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.