IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v53y2016icp238-247.html
   My bibliography  Save this article

Convenience yield in commodity price modeling: A regime switching approach

Author

Listed:
  • Almansour, Abdullah

Abstract

This paper attempts to model the futures term structures of crude oil and natural gas using the notion of convenience yield in a regime switching framework. Unlike the existing studies, which assume the convenience yield to have either a constant value or to have a stochastic behavior with mean reversion to one equilibrium level, the model of this paper extends the Gibson and Schwartz (1990) model to allow for regime switching in the convenience yield along with the other parameters. A closed form solution for the futures price is derived and the model parameters are estimated using the maximum likelihood method. The results show that the estimated regimes are very close to the contango and backwardation regimes commonly seen in futures markets. The results also show that the transitional probabilities play an important role in shaping the futures term structure implied by the model.

Suggested Citation

  • Almansour, Abdullah, 2016. "Convenience yield in commodity price modeling: A regime switching approach," Energy Economics, Elsevier, vol. 53(C), pages 238-247.
  • Handle: RePEc:eee:eneeco:v:53:y:2016:i:c:p:238-247
    DOI: 10.1016/j.eneco.2014.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    3. Jaime Casassus & Pierre Collin-Dufresne & Bryan R. Routledge, 2005. "Equilibrium Commodity Prices with Irreversible Investment and Non-Linear Technology," NBER Working Papers 11864, National Bureau of Economic Research, Inc.
    4. Lammerding, Marc & Stephan, Patrick & Trede, Mark & Wilfling, Bernd, 2013. "Speculative bubbles in recent oil price dynamics: Evidence from a Bayesian Markov-switching state-space approach," Energy Economics, Elsevier, vol. 36(C), pages 491-502.
    5. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    6. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    9. Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013. "The Fundamentals of Commodity Futures Returns," Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
    10. Ravi Bansal & Hao Zhou, 2002. "Term Structure of Interest Rates with Regime Shifts," Journal of Finance, American Finance Association, vol. 57(5), pages 1997-2043, October.
    11. Ke Tang, 2012. "Time-varying long-run mean of commodity prices and the modeling of futures term structures," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 781-790, April.
    12. Stephen P.A. Brown & Mine K. Yücel, 2008. "What Drives Natural Gas Prices?," The Energy Journal, , vol. 29(2), pages 45-60, April.
    13. Qiang Dai & Kenneth J. Singleton & Wei Yang, 2007. "Regime Shifts in a Dynamic Term Structure Model of U.S. Treasury Bond Yields," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1669-1706, 2007 12.
    14. Wai Mun Fong & Kim Hock See, 2003. "Basis variations and regime shifts in the oil futures market," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 499-513.
    15. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, , vol. 22(3), pages 1-29, July.
    16. Carl Chiarella & Les Clewlow & Boda Kang, 2009. "Modelling and Estimating the Forward Price Curve in the Energy Market," Research Paper Series 260, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Chiou Wei, Song Zan & Zhu, Zhen, 2006. "Commodity convenience yield and risk premium determination: The case of the U.S. natural gas market," Energy Economics, Elsevier, vol. 28(4), pages 523-534, July.
    18. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    19. Litzenberger, Robert H & Rabinowitz, Nir, 1995. "Backwardation in Oil Futures Markets: Theory and Empirical Evidence," Journal of Finance, American Finance Association, vol. 50(5), pages 1517-1545, December.
    20. Martin J. Nielsen & Eduardo S. Schwartz, 2004. "Theory of Storage and the Pricing of Commodity Claims," Review of Derivatives Research, Springer, vol. 7(1), pages 5-24.
    21. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    22. Liu, Peng & Tang, Ke, 2011. "The stochastic behavior of commodity prices with heteroskedasticity in the convenience yield," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 211-224, March.
    23. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    24. Zhuliang Chen & Peter Forsyth, 2010. "Implications of a regime-switching model on natural gas storage valuation and optimal operation," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 159-176.
    25. Scott H. Irwin & Dwight R. Sanders, 2011. "Index Funds, Financialization, and Commodity Futures Markets," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(1), pages 1-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zonggang Ma & Chaoqun Ma & Zhijian Wu, 2022. "Pricing commodity-linked bonds with stochastic convenience yield, interest rate and counterparty credit risk: application of Mellin transform methods," Review of Derivatives Research, Springer, vol. 25(1), pages 47-91, April.
    2. Maryam Ahmadi & Niaz Bashiri Behmiri & Matteo Manera, 2020. "The theory of storage in the crude oil futures market, the role of financial conditions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1160-1175, July.
    3. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    4. Babacar Seck & Robert J. Elliott, 2021. "Regime Switching Entropic Risk Measures on Crude Oil Pricing," Papers 2112.13041, arXiv.org.
    5. Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
    6. Oguzhan Cepni, Duc Khuong Nguyen, and Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    7. Ma, Zonggang & Ma, Chaoqun & Wu, Zhijian, 2020. "Closed-form analytical solutions for options on agricultural futures with seasonality and stochastic convenience yield," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    8. Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    2. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
    3. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    4. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    5. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    6. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    7. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    8. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    9. Naomi Boyd & Bingxin Li & Rui Liu, 2022. "Risk premia in the term structure of crude oil futures: long-run and short-run volatility components," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1505-1533, May.
    10. Gao, Xin & Li, Bingxin & Liu, Rui, 2023. "The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia?," Journal of Commodity Markets, Elsevier, vol. 30(C).
    11. Suenaga, Hiroaki, 2013. "Measuring bias in a term-structure model of commodity prices through the comparison of simultaneous and sequential estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 53-66.
    12. W. Keener Hughen, 2010. "A maximal affine stochastic volatility model of oil prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(2), pages 101-133, February.
    13. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    14. Jilong Chen & Christian Ewald & Ruolan Ouyang & Sjur Westgaard & Xiaoxia Xiao, 2022. "Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil," Annals of Operations Research, Springer, vol. 313(1), pages 29-46, June.
    15. Abdullah Almansour & Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, , vol. 37(2), pages 61-88, April.
    16. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    17. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    18. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    19. Stefan Trück & Rafał Weron, 2016. "Convenience Yields and Risk Premiums in the EU‐ETS—Evidence from the Kyoto Commitment Period," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 587-611, June.
    20. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.

    More about this item

    Keywords

    Futures term structure; Regime switching; Convenience yield; Contango; Backwardation;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:53:y:2016:i:c:p:238-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.