IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v22y2025i2d10.1007_s10287-025-00536-3.html
   My bibliography  Save this article

A novel regime-switching commodity pricing model with stochastic convenience yield

Author

Listed:
  • Zhushun Yuan

    (University of Toronto)

  • Roy H. Kwon

    (University of Toronto)

Abstract

The May 2020 futures (CLK20) price of WTI crude oil went negative for the first time in history during the COVID-19 pandemic. Yuan and Kwon in 2023 proposed a novel Markov regime-switching model to incorporate the price negativity and to allow price structural switching between two categories of regimes (Normal vs Lognormal). However, the model assumes constant net convenience yield of the commodity, misrepresenting its time-varying paradigm which is more realistic and strongly supported in the literature. Thus, to fix the problem, we have proposed a new model to contain both model structural change and regime-specific stochastic convenience. An effective algorithm with Kalman filter is proposed for model parameter calibration. The average calibration accuracy of interpreting the dynamic term structure of WTI is significantly increased by the new model by more than 60%, compared to Yuan and Kwon’s model, and by more than 20%, compared to the conventional RS model established by Almansour in 2016. The stress test we conducted verifies that this new model can well capture price negativity and appropriately explain large price movements under extreme market scenarios. Furthermore, the stochastic differential equation (PDE) of futures price is derived assuming strong regime persistency, and both Monte Carlo (MC) and PDE finite difference methods are successfully applied to price European futures options under the new modelling framework. It stresses that the model can be employed in many other fields associated with interest rates, natural gas, electricity power and more.

Suggested Citation

  • Zhushun Yuan & Roy H. Kwon, 2025. "A novel regime-switching commodity pricing model with stochastic convenience yield," Computational Management Science, Springer, vol. 22(2), pages 1-35, December.
  • Handle: RePEc:spr:comgts:v:22:y:2025:i:2:d:10.1007_s10287-025-00536-3
    DOI: 10.1007/s10287-025-00536-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-025-00536-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-025-00536-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    3. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    6. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    7. Baum, Christopher F. & Zerilli, Paola, 2016. "Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility," Energy Economics, Elsevier, vol. 53(C), pages 175-181.
    8. Qiang Dai & Kenneth J. Singleton & Wei Yang, 2007. "Regime Shifts in a Dynamic Term Structure Model of U.S. Treasury Bond Yields," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1669-1706, 2007 12.
    9. Sebastian Sund & Lars H. Sendstad & Jacco J. J. Thijssen, 2022. "Kalman filter approach to real options with active learning," Computational Management Science, Springer, vol. 19(3), pages 457-490, July.
    10. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    11. Zhushun Yuan & Gemai Chen, 2009. "Asymptotic Normality for EMS Option Price Estimator with Continuous or Discontinuous Payoff Functions," Management Science, INFORMS, vol. 55(8), pages 1438-1450, August.
    12. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    13. Liu, Peng & Tang, Ke, 2011. "The stochastic behavior of commodity prices with heteroskedasticity in the convenience yield," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 211-224, March.
    14. Zhuliang Chen & Peter Forsyth, 2010. "Implications of a regime-switching model on natural gas storage valuation and optimal operation," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 159-176.
    15. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almansour, Abdullah, 2016. "Convenience yield in commodity price modeling: A regime switching approach," Energy Economics, Elsevier, vol. 53(C), pages 238-247.
    2. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    3. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    4. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    5. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    6. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    7. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    8. Roncoroni, Andrea & Prokopczuk, Marcel & Ronn, Ehud I., 2018. "Introduction—special issue on commodity and energy markets in the Journal of Banking and Finance," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 1-4.
    9. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    10. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    11. Naomi Boyd & Bingxin Li & Rui Liu, 2022. "Risk premia in the term structure of crude oil futures: long-run and short-run volatility components," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1505-1533, May.
    12. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.
    13. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    14. Gao, Xin & Li, Bingxin & Liu, Rui, 2023. "The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia?," Journal of Commodity Markets, Elsevier, vol. 30(C).
    15. Andrianos E. Tsekrekos & Mark B. Shackleton & Rafał Wojakowski, 2012. "Evaluating Natural Resource Investments under Different Model Dynamics: Managerial Insights," European Financial Management, European Financial Management Association, vol. 18(4), pages 543-575, September.
    16. Cortazar, Gonzalo & Naranjo, Lorenzo & Sainz, Felipe, 2021. "Optimal decision policy for real options under general Markovian dynamics," European Journal of Operational Research, Elsevier, vol. 288(2), pages 634-647.
    17. Yepes Rodri­guez, Ramón, 2008. "Real option valuation of free destination in long-term liquefied natural gas supplies," Energy Economics, Elsevier, vol. 30(4), pages 1909-1932, July.
    18. W. Keener Hughen, 2010. "A maximal affine stochastic volatility model of oil prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(2), pages 101-133, February.
    19. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
    20. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:22:y:2025:i:2:d:10.1007_s10287-025-00536-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.