IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v3y2021i2p27-459d577877.html

Forecasting Commodity Prices: Looking for a Benchmark

Author

Listed:
  • Marek Kwas

    (Collegium of Economic Analysis, SGH Warsaw School of Economics, 02-554 Warsaw, Poland)

  • Michał Rubaszek

    (Collegium of Economic Analysis, SGH Warsaw School of Economics, 02-554 Warsaw, Poland)

Abstract

The random walk, no-change forecast is a customary benchmark in the literature on forecasting commodity prices. We challenge this custom by examining whether alternative models are more suited for this purpose. Based on a literature review and the results of two out-of-sample forecasting experiments, we draw two conclusions. First, in forecasting nominal commodity prices at shorter horizons, the random walk benchmark should be supplemented by futures-based forecasts. Second, in forecasting real commodity prices, the random walk benchmark should be supplemented, if not substituted, by forecasts from the local projection models. In both cases, the alternative benchmarks deliver forecasts of comparable and, in many cases, of superior accuracy.

Suggested Citation

  • Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.
  • Handle: RePEc:gam:jforec:v:3:y:2021:i:2:p:27-459:d:577877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/3/2/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/3/2/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eyal Dvir & Kenneth S. Rogoff, 2009. "Three Epochs of Oil," NBER Working Papers 14927, National Bureau of Economic Research, Inc.
    2. Shrestha, Keshab, 2014. "Price discovery in energy markets," Energy Economics, Elsevier, vol. 45(C), pages 229-233.
    3. Atanu Ghoshray, 2019. "Are Shocks Transitory or Permanent? An Inquiry into Agricultural Commodity Prices," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(1), pages 26-43, February.
    4. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    5. Van Robays, Ine & Belu Mănescu, Cristiana, 2014. "Forecasting the Brent oil price: addressing time-variation in forecast performance," Working Paper Series 1735, European Central Bank.
    6. Menzie D. Chinn & Olivier Coibion, 2014. "The Predictive Content of Commodity Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(7), pages 607-636, July.
    7. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    8. Viviana Fernandez, 2016. "Spot and Futures Markets Linkages: Does Contango Differ from Backwardation?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(4), pages 375-396, April.
    9. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    10. Nahid Movassagh & Bagher Modjtahedi, 2005. "Bias and backwardation in natural gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(3), pages 281-308, March.
    11. Modjtahedi, Bagher & Movassagh, Nahid, 2005. "Natural-gas futures: Bias, predictive performance, and the theory of storage," Energy Economics, Elsevier, vol. 27(4), pages 617-637, July.
    12. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    13. Mamatzakis, E. & Remoundos, P., 2011. "Testing for adjustment costs and regime shifts in BRENT crude futures market," Economic Modelling, Elsevier, vol. 28(3), pages 1000-1008, May.
    14. Mr. David A Reichsfeld & Mr. Shaun K. Roache, 2011. "Do Commodity Futures Help Forecast Spot Prices?," IMF Working Papers 2011/254, International Monetary Fund.
    15. Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
    16. Geman, Hélyette & Ohana, Steve, 2009. "Forward curves, scarcity and price volatility in oil and natural gas markets," Energy Economics, Elsevier, vol. 31(4), pages 576-585, July.
    17. Anton Nakov & Galo Nuño, 2013. "Saudi Arabia and the Oil Market," Economic Journal, Royal Economic Society, vol. 123(12), pages 1333-1362, December.
    18. Fernandez, Viviana, 2016. "Futures markets and fundamentals of base metals," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 215-229.
    19. Andrea Coppola, 2008. "Forecasting oil price movements: Exploiting the information in the futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(1), pages 34-56, January.
    20. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    21. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    22. West, Kenneth D. & Wong, Ka-Fu, 2014. "A factor model for co-movements of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 289-309.
    23. Huang, Bwo-Nung & Yang, C.W. & Hwang, M.J., 2009. "The dynamics of a nonlinear relationship between crude oil spot and futures prices: A multivariate threshold regression approach," Energy Economics, Elsevier, vol. 31(1), pages 91-98, January.
    24. Deaton, Angus & Laroque, Guy, 1996. "Competitive Storage and Commodity Price Dynamics," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 896-923, October.
    25. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    26. Jeng Bau Lin & Chin Chia Liang, 2010. "Testing for threshold cointegration and error correction: evidence in the petroleum futures market," Applied Economics, Taylor & Francis Journals, vol. 42(22), pages 2897-2907.
    27. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    28. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2022. "Common factors and the dynamics of cereal prices. A forecasting perspective," Journal of Commodity Markets, Elsevier, vol. 28(C).
    29. Anton Nakov & Andrea Pescatori, 2010. "Oil and the Great Moderation," Economic Journal, Royal Economic Society, vol. 120(543), pages 131-156, March.
    30. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    31. Zaremba, Adam & Umar, Zaghum & Mikutowski, Mateusz, 2019. "Inflation hedging with commodities: A wavelet analysis of seven centuries worth of data," Economics Letters, Elsevier, vol. 181(C), pages 90-94.
    32. Tilton, John E. & Humphreys, David & Radetzki, Marian, 2011. "Investor demand and spot commodity prices," Resources Policy, Elsevier, vol. 36(3), pages 187-195, September.
    33. Gargano, Antonio & Timmermann, Allan, 2014. "Forecasting commodity price indexes using macroeconomic and financial predictors," International Journal of Forecasting, Elsevier, vol. 30(3), pages 825-843.
    34. Eugene F. Fama & Kenneth R. French, 2015. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 4, pages 79-102, World Scientific Publishing Co. Pte. Ltd..
    35. Ciner, Cetin, 2017. "Predicting white metal prices by a commodity sensitive exchange rate," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 309-315.
    36. Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
    37. Snudden, Stephen, 2018. "Targeted growth rates for long-horizon crude oil price forecasts," International Journal of Forecasting, Elsevier, vol. 34(1), pages 1-16.
    38. Bassam Fattouh & Lutz Kilian & Lavan Mahadeva, 2013. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," The Energy Journal, , vol. 34(3), pages 7-33, July.
    39. Dabin Wang & William G. Tomek, 2007. "Commodity Prices and Unit Root Tests," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(4), pages 873-889.
    40. Funk, Christoph, 2018. "Forecasting the real price of oil - Time-variation and forecast combination," Energy Economics, Elsevier, vol. 76(C), pages 288-302.
    41. Zorzi, Michele Ca’ & Rubaszek, Michał, 2020. "Exchange rate forecasting on a napkin," Journal of International Money and Finance, Elsevier, vol. 104(C).
    42. Rubaszek, Michał, 2021. "Forecasting crude oil prices with DSGE models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
    43. Amor Aniss Benmoussa & Reinhard Ellwanger & Stephen Snudden, 2020. "The New Benchmark for Forecasts of the Real Price of Crude Oil," Staff Working Papers 20-39, Bank of Canada.
    44. Working, Holbrook, 1933. "Price Relations Between July And September Wheat Futures At Chicago Since 1885," Wheat Studies, Stanford University, Food Research Institute, vol. 9(06), March.
    45. Almansour, Abdullah, 2016. "Convenience yield in commodity price modeling: A regime switching approach," Energy Economics, Elsevier, vol. 53(C), pages 238-247.
    46. Kruse, Robinson & Wegener, Christoph, 2020. "Time-varying persistence in real oil prices and its determinant," Energy Economics, Elsevier, vol. 85(C).
    47. Gulley, Andrew & Tilton, John E., 2014. "The relationship between spot and futures prices: An empirical analysis," Resources Policy, Elsevier, vol. 41(C), pages 109-112.
    48. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    49. Anton Pak, 2018. "Predicting crude oil prices: Replication of the empirical results in “What do we learn from the price of crude oil?”," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 160-163, January.
    50. Laura Coroneo & Fabrizio Iacone, 2015. "Comparing predictive accuracy in small samples," Discussion Papers 15/15, Department of Economics, University of York.
    51. Symeonidis, Lazaros & Prokopczuk, Marcel & Brooks, Chris & Lazar, Emese, 2012. "Futures basis, inventory and commodity price volatility: An empirical analysis," Economic Modelling, Elsevier, vol. 29(6), pages 2651-2663.
    52. Fernandez, Viviana, 2017. "A historical perspective of the informational content of commodity futures," Resources Policy, Elsevier, vol. 51(C), pages 135-150.
    53. Dvir, Eyal & Rogoff, Kenneth, 2014. "Demand effects and speculation in oil markets: Theory and evidence," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 113-128.
    54. Adewuyi, Adeolu O. & Wahab, Bashir A. & Adeboye, Olusegun S., 2020. "Stationarity of prices of precious and industrial metals using recent unit root methods: Implications for markets’ efficiency," Resources Policy, Elsevier, vol. 65(C).
    55. Fernandez, Viviana, 2016. "Further evidence on the relationship between spot and futures prices," Resources Policy, Elsevier, vol. 49(C), pages 368-371.
    56. Beckmann, Joscha & Belke, Ansgar & Czudaj, Robert, 2014. "Regime-dependent adjustment in energy spot and futures markets," Economic Modelling, Elsevier, vol. 40(C), pages 400-409.
    57. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markos Farag, Stephen Snudden, Greg Upton, 2024. "Can Futures Prices Predict the Real Price of Primary Commodities?," LCERPA Working Papers jc0145, Laurier Centre for Economic Research and Policy Analysis, revised 2024.
    2. Mohammed-Khalil Ghali & Cecil Pang & Oscar Molina & Carlos Gershenson-Garcia & Daehan Won, 2025. "Forecasting Commodity Price Shocks Using Temporal and Semantic Fusion of Prices Signals and Agentic Generative AI Extracted Economic News," Papers 2508.06497, arXiv.org.
    3. Massimo Guidolin & Manuela Pedio, 2022. "Switching Coefficients or Automatic Variable Selection: An Application in Forecasting Commodity Returns," Forecasting, MDPI, vol. 4(1), pages 1-32, February.
    4. Kampouris, Ilias & Mertzanis, Charilaos & Samitas, Aristeidis, 2025. "Natural disaster shocks and commodity market volatility: A machine learning approach," Pacific-Basin Finance Journal, Elsevier, vol. 90(C).
    5. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    6. Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Cerqueti, Roy & Ficcadenti, Valerio & Mattera, Raffaele, 2024. "Investors’ attention and network spillover for commodity market forecasting," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    2. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    3. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    4. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Rubaszek, Michał, 2021. "Forecasting crude oil prices with DSGE models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
    6. Fernandez, Viviana, 2020. "The predictive power of convenience yields," Resources Policy, Elsevier, vol. 65(C).
    7. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    8. Arroyo Marioli,Francisco & Khadan,Jeetendra & Ohnsorge,Franziska Lieselotte & Yamazaki,Takefumi, 2023. "Forecasting Industrial Commodity Prices : Literature Review and a Model Suite," Policy Research Working Paper Series 10611, The World Bank.
    9. Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
    10. Fernandez, Viviana, 2017. "A historical perspective of the informational content of commodity futures," Resources Policy, Elsevier, vol. 51(C), pages 135-150.
    11. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    12. Jia, Jian & Kang, Sang Baum, 2022. "Do the basis and other predictors of futures return also predict spot return with the same signs and magnitudes? Evidence from the LME," Journal of Commodity Markets, Elsevier, vol. 25(C).
    13. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    14. Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
    15. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    16. Zuzanna Karolak, 2021. "Energy prices forecasting using nonlinear univariate models," Bank i Kredyt, Narodowy Bank Polski, vol. 52(6), pages 577-598.
    17. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
    18. Kilian, Lutz & Baumeister, Christiane, 2014. "A General Approach to Recovering Market Expectations from Futures Prices With an Application to Crude Oil," CEPR Discussion Papers 10162, C.E.P.R. Discussion Papers.
    19. Amor Aniss Benmoussa & Reinhard Ellwanger & Stephen Snudden, 2020. "The New Benchmark for Forecasts of the Real Price of Crude Oil," Staff Working Papers 20-39, Bank of Canada.
    20. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:3:y:2021:i:2:p:27-459:d:577877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.