IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v134y2022ics037842662100282x.html
   My bibliography  Save this article

The illusion of oil return predictability: The choice of data matters!

Author

Listed:
  • Conlon, Thomas
  • Cotter, John
  • Eyiah-Donkor, Emmanuel

Abstract

Previous studies document statistically significant evidence of crude oil return predictability by several forecasting variables. We suggest that this evidence is misleading and follows from the common use of within-month averages of daily oil prices in calculating returns used in predictive regressions. Averaging introduces a bias in the estimates of the first-order autocorrelation coefficient and variance of returns. Consequently, estimates of regression coefficients are inefficient and associated t-statistics are overstated, leading to false inference about the true extent of in-sample and out-of-sample return predictability. On the contrary, using end-of-month data, we do not find convincing evidence for the predictability of oil returns. Our results highlight and provide a cautionary tale on how the choice of data could influence hypothesis testing for return predictability.

Suggested Citation

  • Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:jbfina:v:134:y:2022:i:c:s037842662100282x
    DOI: 10.1016/j.jbankfin.2021.106331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037842662100282X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2021.106331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    3. Shiu-Sheng Chen, 2014. "Forecasting Crude Oil Price Movements With Oil-Sensitive Stocks," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 830-844, April.
    4. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    5. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    6. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    7. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    8. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
    9. Baumeister, Christiane & Kilian, Lutz & Zhou, Xiaoqing, 2018. "Are Product Spreads Useful For Forecasting Oil Prices? An Empirical Evaluation Of The Verleger Hypothesis," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 562-580, April.
    10. Kilian, Lutz & Baumeister, Christiane, 2014. "A General Approach to Recovering Market Expectations from Futures Prices With an Application to Crude Oil," CEPR Discussion Papers 10162, C.E.P.R. Discussion Papers.
    11. Clive Granger & Namwon Hyung & Yongil Jeon, 2001. "Spurious regressions with stationary series," Applied Economics, Taylor & Francis Journals, vol. 33(7), pages 899-904.
    12. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    15. Ahmed, Shamim & Tsvetanov, Daniel, 2016. "The predictive performance of commodity futures risk factors," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 20-36.
    16. Menzie D. Chinn & Olivier Coibion, 2014. "The Predictive Content of Commodity Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(7), pages 607-636, July.
    17. Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
    18. Robert B. Barsky & Lutz Kilian, 2002. "Do We Really Know That Oil Caused the Great Stagflation? A Monetary Alternative," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 137-198, National Bureau of Economic Research, Inc.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    20. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    21. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    22. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    23. Amor Aniss Benmoussa & Reinhard Ellwanger & Stephen Snudden, 2020. "The New Benchmark for Forecasts of the Real Price of Crude Oil," Staff Working Papers 20-39, Bank of Canada.
    24. Xia Li & Kaijian He & Kin Keung Lai & Yingchao Zou, 2014. "Forecasting Crude Oil Price with Multiscale Denoising Ensemble Model," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-9, May.
    25. Schwert, G William, 1990. "Indexes of U.S. Stock Prices from 1802 to 1987," The Journal of Business, University of Chicago Press, vol. 63(3), pages 399-426, July.
    26. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    27. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    28. Szakmary, Andrew C. & Shen, Qian & Sharma, Subhash C., 2010. "Trend-following trading strategies in commodity futures: A re-examination," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 409-426, February.
    29. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    30. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1414, August.
    31. Rosenberg, Barr, 1971. "Statistical Analysis of Price Series Obscured by Averaging Measures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(4), pages 1083-1094, September.
    32. Ye, Michael & Zyren, John & Shore, Joanne, 2006. "Forecasting short-run crude oil price using high- and low-inventory variables," Energy Policy, Elsevier, vol. 34(17), pages 2736-2743, November.
    33. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    34. Miffre, Joelle & Rallis, Georgios, 2007. "Momentum strategies in commodity futures markets," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1863-1886, June.
    35. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    36. Fuertes, Ana-Maria & Miffre, Joëlle & Rallis, Georgios, 2010. "Tactical allocation in commodity futures markets: Combining momentum and term structure signals," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2530-2548, October.
    37. Wilson, Jack W & Jones, Charles P & Lundstrum, Leonard L, 2001. "Stochastic Properties of Time-Averaged Financial Data: Explanation and Empirical Demonstration Using Monthly Stock Prices," The Financial Review, Eastern Finance Association, vol. 36(3), pages 175-190, August.
    38. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    39. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    40. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    41. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    2. Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
    3. Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
    4. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    5. Bouteska, Ahmed & Hajek, Petr & Fisher, Ben & Abedin, Mohammad Zoynul, 2023. "Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    2. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    4. Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
    5. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    6. Wen, Chufu & Zhu, Haoyang & Dai, Zhifeng, 2023. "Forecasting commodity prices returns: The role of partial least squares approach," Energy Economics, Elsevier, vol. 125(C).
    7. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    8. Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
    9. Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
    10. Dai, Zhifeng & Kang, Jie, 2021. "Bond yield and crude oil prices predictability," Energy Economics, Elsevier, vol. 97(C).
    11. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    12. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
    13. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    14. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    15. Libo Yin & Qingyuan Yang & Zhi Su, 2017. "Predictability of structural co-movement in commodity prices: the role of technical indicators," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 795-812, May.
    16. Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
    17. Yu, Dan & Chen, Chuang & Wang, Yudong & Zhang, Yaojie, 2023. "Hedging pressure momentum and the predictability of oil futures returns," Economic Modelling, Elsevier, vol. 121(C).
    18. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    19. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    20. Tian, Guangning & Peng, Yuchao & Meng, Yuhao, 2023. "Forecasting crude oil prices in the COVID-19 era: Can machine learn better?," Energy Economics, Elsevier, vol. 125(C).

    More about this item

    Keywords

    Averaged crude oil prices; Spurious autocorrelation; Return predictability; Out-of-sample forecasts; Statistical inference;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:134:y:2022:i:c:s037842662100282x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.