IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v36y2024ics2405851324000631.html
   My bibliography  Save this article

Forecasting crude oil returns with oil-related industry ESG indices

Author

Listed:
  • Li, Kaixin
  • Zhang, Zhikai
  • Wang, Yudong
  • Zhang, Yaojie

Abstract

We construct North American oil-related industry ESG indices based on Elastic Net and PCA/SPCA/PLS dimensionality reduction techniques. We discover that the ESG indices show significant forecasting power for crude oil returns both in- and out-of-sample, and their ability to significantly predict oil returns remains when the delayed ESG release is considered. Additionally, our analysis suggests that the predictive abilities of ESG indices remain robust and unaffected by stock returns in the oil-related industry. The ESG indices can provide information that is heterogeneous and complementary to macroeconomic variables and technical indicators. Based on the analysis over the business cycle, ESG indices show predictability in forecasting crude oil returns during economic expansions rather than recessions. Moreover, ESG indices' predictive ability is also of economic significance, as shown by the substantial economic value it generates for mean-variance investors. Finally, we explore the potential economic channels, and the result reveals that the predictive power of ESG indices arises from speculative behavior in the oil market and oil demand.

Suggested Citation

  • Li, Kaixin & Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil returns with oil-related industry ESG indices," Journal of Commodity Markets, Elsevier, vol. 36(C).
  • Handle: RePEc:eee:jocoma:v:36:y:2024:i:c:s2405851324000631
    DOI: 10.1016/j.jcomm.2024.100444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851324000631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2024.100444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
    2. Samuel M. Hartzmark & Abigail B. Sussman, 2019. "Do Investors Value Sustainability? A Natural Experiment Examining Ranking and Fund Flows," Journal of Finance, American Finance Association, vol. 74(6), pages 2789-2837, December.
    3. Jondeau, Eric & Zhang, Qunzi & Zhu, Xiaoneng, 2019. "Average skewness matters," Journal of Financial Economics, Elsevier, vol. 134(1), pages 29-47.
    4. Wang, Changyun, 2004. "Futures trading activity and predictable foreign exchange market movements," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1023-1041, May.
    5. Bolton, Patrick & Kacperczyk, Marcin, 2021. "Do investors care about carbon risk?," Journal of Financial Economics, Elsevier, vol. 142(2), pages 517-549.
    6. Guo, Jiaqi & Long, Shaobo & Luo, Weijie, 2022. "Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Deeney, Peter & Cummins, Mark & Dowling, Michael & Bermingham, Adam, 2015. "Sentiment in oil markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 179-185.
    8. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    9. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
    10. Robert F Engle & Stefano Giglio & Bryan Kelly & Heebum Lee & Johannes Stroebel, 2020. "Hedging Climate Change News," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1184-1216.
    11. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    12. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    13. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    14. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    15. Morana, Claudio, 2013. "Oil price dynamics, macro-finance interactions and the role of financial speculation," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 206-226.
    16. Danyan Wen & Mengxi He & Li Liu & Yaojie Zhang, 2022. "Forecasting crude oil prices: do technical indicators need economic constraints?," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1545-1559, August.
    17. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2022. "Dissecting green returns," Journal of Financial Economics, Elsevier, vol. 146(2), pages 403-424.
    18. Ewald, Christian-Oliver & Haugom, Erik & Lien, Gudbrand & Størdal, Ståle & Wu, Yuexiang, 2022. "Trading time seasonality in commodity futures: An opportunity for arbitrage in the natural gas and crude oil markets?," Energy Economics, Elsevier, vol. 115(C).
    19. Elyasiani, Elyas & Mansur, Iqbal & Odusami, Babatunde, 2011. "Oil price shocks and industry stock returns," Energy Economics, Elsevier, vol. 33(5), pages 966-974, September.
    20. Lutz Kilian & Robert J. Vigfusson, 2011. "Are the responses of the U.S. economy asymmetric in energy price increases and decreases?," Quantitative Economics, Econometric Society, vol. 2(3), pages 419-453, November.
    21. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    22. Le, Thai Hong & Luong, Anh Tram, 2022. "Dynamic spillovers between oil price, stock market, and investor sentiment: Evidence from the United States and Vietnam," Resources Policy, Elsevier, vol. 78(C).
    23. Mingming, Tang & Jinliang, Zhang, 2012. "A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices," Journal of Economics and Business, Elsevier, vol. 64(4), pages 275-286.
    24. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    25. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    26. Erhart, Szilárd, 2022. "Take it with a pinch of salt—ESG rating of stocks and stock indices," International Review of Financial Analysis, Elsevier, vol. 83(C).
    27. Lutz Kilian, 2014. "Oil Price Shocks: Causes and Consequences," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 133-154, October.
    28. Pedersen, Lasse Heje & Fitzgibbons, Shaun & Pomorski, Lukasz, 2021. "Responsible investing: The ESG-efficient frontier," Journal of Financial Economics, Elsevier, vol. 142(2), pages 572-597.
    29. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    30. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
    31. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    32. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    33. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    34. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    35. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    36. Wei, Yu & Qin, Songkun & Li, Xiafei & Zhu, Sha & Wei, Guiwu, 2019. "Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis," Finance Research Letters, Elsevier, vol. 30(C), pages 23-29.
    37. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
    38. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    39. Khorasani, Mahnaz & Sarker, Sudipa & Kabir, Golam & Ali, Syed Mithun, 2022. "Evaluating strategies to decarbonize oil and gas supply chain: Implications for energy policies in emerging economies," Energy, Elsevier, vol. 258(C).
    40. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    41. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    42. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    43. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    44. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    45. Ji, Qiang & Li, Jianping & Sun, Xiaolei, 2019. "Measuring the interdependence between investor sentiment and crude oil returns: New evidence from the CFTC's disaggregated reports," Finance Research Letters, Elsevier, vol. 30(C), pages 420-425.
    46. Kaufmann, Robert K., 2011. "The role of market fundamentals and speculation in recent price changes for crude oil," Energy Policy, Elsevier, vol. 39(1), pages 105-115, January.
    47. Avramov, Doron & Cheng, Si & Lioui, Abraham & Tarelli, Andrea, 2022. "Sustainable investing with ESG rating uncertainty," Journal of Financial Economics, Elsevier, vol. 145(2), pages 642-664.
    48. Lang, Qiaoqi & Lu, Xinjie & Ma, Feng & Huang, Dengshi, 2022. "Oil futures volatility predictability: Evidence based on Twitter-based uncertainty," Finance Research Letters, Elsevier, vol. 47(PA).
    49. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    50. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    51. Bork, Lasse & Kaltwasser, Pablo Rovira & Sercu, Piet, 2022. "Aggregation bias in tests of the commodity currency hypothesis," Journal of Banking & Finance, Elsevier, vol. 135(C).
    52. Kolodziej, Marek & Kaufmann, Robert K., 2013. "The role of trader positions in spot and futures prices for WTI," Energy Economics, Elsevier, vol. 40(C), pages 176-182.
    53. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    54. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    2. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    3. Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
    4. Ma, Yong & Li, Shuaibing & Zhou, Mingtao, 2024. "Forecasting crude oil prices: Does global financial uncertainty matter?," International Review of Economics & Finance, Elsevier, vol. 96(PC).
    5. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    6. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    7. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    8. Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
    9. Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
    10. Zhang, Yaojie & He, Mengxi & Wen, Danyan & Wang, Yudong, 2023. "Forecasting crude oil price returns: Can nonlinearity help?," Energy, Elsevier, vol. 262(PB).
    11. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
    12. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    13. He, Mengxi & Zhang, Zhikai & Zhang, Yaojie, 2024. "Forecasting crude oil prices with global ocean temperatures," Energy, Elsevier, vol. 311(C).
    14. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    15. Tian, Guangning & Peng, Yuchao & Meng, Yuhao, 2023. "Forecasting crude oil prices in the COVID-19 era: Can machine learn better?," Energy Economics, Elsevier, vol. 125(C).
    16. Zhang, Yaojie & Zhao, Xinyi & Zhang, Zhikai, 2025. "Financial regulatory policy uncertainty: An informative predictor for financial industry stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 75(PB).
    17. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    18. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    19. Wen, Chufu & Zhu, Haoyang & Dai, Zhifeng, 2023. "Forecasting commodity prices returns: The role of partial least squares approach," Energy Economics, Elsevier, vol. 125(C).
    20. Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting crude oil prices: A reduced-rank approach," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 698-711.

    More about this item

    Keywords

    ESG indices; Crude oil returns; Elastic net; Economic expansions; Speculative behavior;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:36:y:2024:i:c:s2405851324000631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.