IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v64y2023ics0275531922002495.html
   My bibliography  Save this article

Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network

Author

Listed:
  • Bouteska, Ahmed
  • Hajek, Petr
  • Fisher, Ben
  • Abedin, Mohammad Zoynul

Abstract

This paper aims to develop an artificial neural networkbased forecasting model employing a nonlinear focused time-delayed neural network (FTDNN) for energy commodity market forecasts. To validate the proposed model, crude oil and natural gas prices are used for the period 2007–2020, including the Covid-19 period. Empirical findings show that the FTDNN model outperforms existing baselines and artificial neural networkbased models in forecasting West Texas Intermediate and Brent crude oil prices and National Balancing Point and Henry Hub natural gas prices. As a result, we demonstrate the predictability of energy commodity prices during the volatile crisis period, which is attributed to the flexibility of the model parameters, implying that our study can facilitate a better understanding of the dynamics of commodity prices in the energy market.

Suggested Citation

  • Bouteska, Ahmed & Hajek, Petr & Fisher, Ben & Abedin, Mohammad Zoynul, 2023. "Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network," Research in International Business and Finance, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922002495
    DOI: 10.1016/j.ribaf.2022.101863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531922002495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2022.101863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Yu & Qin, Songkun & Li, Xiafei & Zhu, Sha & Wei, Guiwu, 2019. "Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis," Finance Research Letters, Elsevier, vol. 30(C), pages 23-29.
    2. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    3. Balkin, Sandy D. & Ord, J. Keith, 2000. "Automatic neural network modeling for univariate time series," International Journal of Forecasting, Elsevier, vol. 16(4), pages 509-515.
    4. repec:clg:wpaper:1999-04 is not listed on IDEAS
    5. Cevik, Nuket Kirci & Cevik, Emrah I. & Dibooglu, Sel, 2020. "Oil prices, stock market returns and volatility spillovers: Evidence from Turkey," Journal of Policy Modeling, Elsevier, vol. 42(3), pages 597-614.
    6. Bastianin, Andrea & Galeotti, Marzio & Polo, Michele, 2019. "Convergence of European natural gas prices," Energy Economics, Elsevier, vol. 81(C), pages 793-811.
    7. Lutz Kilian & Xiaoqing Zhou, 2022. "The Propagation of Regional Shocks in Housing Markets: Evidence from Oil Price Shocks in Canada," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(4), pages 953-987, June.
    8. Siliverstovs, Boriss & L'Hegaret, Guillaume & Neumann, Anne & von Hirschhausen, Christian, 2005. "International market integration for natural gas? A cointegration analysis of prices in Europe, North America and Japan," Energy Economics, Elsevier, vol. 27(4), pages 603-615, July.
    9. Apostolos Serletis & John Herbert, 2007. "The Message in North American Energy Prices," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 13, pages 156-171, World Scientific Publishing Co. Pte. Ltd..
    10. Mensi, Walid & Rehman, Mobeen Ur & Al-Yahyaee, Khamis Hamed, 2020. "Time-frequency co-movements between oil prices and interest rates: Evidence from a wavelet-based approach," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    11. Mensi, Walid & Yousaf, Imran & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Asymmetric spillover and network connectedness between gold, BRENT oil and EU subsector markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    12. Lin, Boqiang & Bai, Rui, 2021. "Oil prices and economic policy uncertainty: Evidence from global, oil importers, and exporters’ perspective," Research in International Business and Finance, Elsevier, vol. 56(C).
    13. Chkir, Imed & Guesmi, Khaled & Brayek, Angham Ben & Naoui, Kamel, 2020. "Modelling the nonlinear relationship between oil prices, stock markets, and exchange rates in oil-exporting and oil-importing countries," Research in International Business and Finance, Elsevier, vol. 54(C).
    14. Lv, Wendai & Wu, Qian, 2022. "Global economic conditions index and oil price predictability," Finance Research Letters, Elsevier, vol. 48(C).
    15. Zouhaier Dhifaoui & Rabeh Khalfaoui & Mohammad Zoynul Abedin & Baofeng Shi, 2022. "Quantifying information transfer among clean energy, carbon, oil, and precious metals: A novel transfer entropy-based approach," Post-Print hal-03797566, HAL.
    16. Chu, Pyung Kun & Hoff, Kristian & Molnár, Peter & Olsvik, Magnus, 2022. "Crude oil: Does the futures price predict the spot price?," Research in International Business and Finance, Elsevier, vol. 60(C).
    17. Chatziantoniou, Ioannis & Degiannakis, Stavros & Delis, Panagiotis & Filis, George, 2021. "Forecasting oil price volatility using spillover effects from uncertainty indices," Finance Research Letters, Elsevier, vol. 42(C).
    18. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    19. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
    20. Akhtaruzzaman, Md & Boubaker, Sabri & Lucey, Brian M. & Sensoy, Ahmet, 2021. "Is gold a hedge or a safe-haven asset in the COVID–19 crisis?," Economic Modelling, Elsevier, vol. 102(C).
    21. Baghestani, Hamid & Chazi, Abdelaziz & Khallaf, Ashraf, 2019. "A directional analysis of oil prices and real exchange rates in BRIC countries," Research in International Business and Finance, Elsevier, vol. 50(C), pages 450-456.
    22. Narayan, Paresh Kumar, 2022. "Evidence of oil market price clustering during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 80(C).
    23. Dhifaoui, Zouhaier & Khalfaoui, Rabeh & Abedin, Mohammad Zoynul & Shi, Baofeng, 2022. "Quantifying information transfer among clean energy, carbon, oil, and precious metals: A novel transfer entropy-based approach," Finance Research Letters, Elsevier, vol. 49(C).
    24. Chen, Shiu-Sheng & Chen, Hung-Chyn, 2007. "Oil prices and real exchange rates," Energy Economics, Elsevier, vol. 29(3), pages 390-404, May.
    25. Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
    26. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    27. Sharif, Arshian & Aloui, Chaker & Yarovaya, Larisa, 2020. "COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach," International Review of Financial Analysis, Elsevier, vol. 70(C).
    28. Ahmed BenSaïda & Sabri Boubaker & Duc Khuong Nguyen, 2018. "The shifting dependence dynamics between the G7 stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 18(5), pages 801-812, May.
    29. Huang, Jianbai & Ding, Qian & Zhang, Hongwei & Guo, Yaoqi & Suleman, Muhammad Tahir, 2021. "Nonlinear dynamic correlation between geopolitical risk and oil prices: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 56(C).
    30. Oberndorfer, Ulrich, 2009. "Energy prices, volatility, and the stock market: Evidence from the Eurozone," Energy Policy, Elsevier, vol. 37(12), pages 5787-5795, December.
    31. Enwereuzoh, Precious Adaku & Odei-Mensah, Jones & Owusu Junior, Peterson, 2021. "Crude oil shocks and African stock markets," Research in International Business and Finance, Elsevier, vol. 55(C).
    32. Sepehr Ramyar & Farhad Kianfar, 2019. "Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 743-761, February.
    33. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    34. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
    35. Mohammad Zoynul Abedin & Chi Guotai & Fahmida–E– Moula & A.S.M. Sohel Azad & Mohammed Shamim Uddin Khan, 2019. "Topological applications of multilayer perceptrons and support vector machines in financial decision support systems," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 474-507, January.
    36. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    37. Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
    38. Sauraj Verma, 2021. "Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 130-142, April.
    39. Salisu, Afees A. & Ebuh, Godday U. & Usman, Nuruddeen, 2020. "Revisiting oil-stock nexus during COVID-19 pandemic: Some preliminary results," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 280-294.
    40. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    41. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    42. Lin, Yu & Yan, Yan & Xu, Jiali & Liao, Ying & Ma, Feng, 2021. "Forecasting stock index price using the CEEMDAN-LSTM model," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    43. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    44. Laborda, Ricardo & Olmo, Jose, 2021. "Volatility spillover between economic sectors in financial crisis prediction: Evidence spanning the great financial crisis and Covid-19 pandemic," Research in International Business and Finance, Elsevier, vol. 57(C).
    45. Zhang, Dayong & Ji, Qiang, 2018. "Further evidence on the debate of oil-gas price decoupling: A long memory approach," Energy Policy, Elsevier, vol. 113(C), pages 68-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    3. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    4. Foued Sa^adaoui, 2023. "Structured Multifractal Scaling of the Principal Cryptocurrencies: Examination using a Self-Explainable Machine Learning," Papers 2304.08440, arXiv.org.
    5. Zhao, Xin & Benkraiem, Ramzi & Abedin, Mohammad Zoynul & Zhou, Silu, 2024. "The charm of green finance: Can green finance reduce corporate carbon emissions?," Energy Economics, Elsevier, vol. 134(C).
    6. Bouteska, Ahmed & Harasheh, Murad & Abedin, Mohammad Zoynul, 2023. "Revisiting overconfidence in investment decision-making: Further evidence from the U.S. market," Research in International Business and Finance, Elsevier, vol. 66(C).
    7. Uddin, Ajim & Tao, Xinyuan & Yu, Dantong, 2023. "Attention based dynamic graph neural network for asset pricing," Global Finance Journal, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    2. Kumeka, Terver Theophilus & Uzoma-Nwosu, Damian Chidozie & David-Wayas, Maria Onyinye, 2022. "The effects of COVID-19 on the interrelationship among oil prices, stock prices and exchange rates in selected oil exporting economies," Resources Policy, Elsevier, vol. 77(C).
    3. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    4. Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
    5. Liu, Zhenhua & Zhang, Huiying & Ding, Zhihua & Lv, Tao & Wang, Xu & Wang, Deqing, 2022. "When are the effects of economic policy uncertainty on oil–stock correlations larger? Evidence from a regime-switching analysis," Economic Modelling, Elsevier, vol. 114(C).
    6. Canepa, Alessandra & Zanetti Chini, Emilio & Alqaralleh, Huthaifa, 2023. "Modelling and Forecasting Energy Market Cycles: A Generalized Smooth Transition Approach," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202318, University of Turin.
    7. Zhang, Xiheng & Liu, Jiayu & Zhang, Kaiqi & Robert, James, 2023. "Analysis of firm performance in presence of oil price shocks: Importance of skilled management," Resources Policy, Elsevier, vol. 86(PA).
    8. Kamal, Javed Bin & Wohar, Mark & Kamal, Khaled Bin, 2022. "Do gold, oil, equities, and currencies hedge economic policy uncertainty and geopolitical risks during covid crisis?," Resources Policy, Elsevier, vol. 78(C).
    9. Zied Ftiti & Kais Tissaoui & Sahbi Boubaker, 2022. "On the relationship between oil and gas markets: a new forecasting framework based on a machine learning approach," Annals of Operations Research, Springer, vol. 313(2), pages 915-943, June.
    10. Akhtaruzzaman, Md & Boubaker, Sabri & Umar, Zaghum, 2022. "COVID–19 media coverage and ESG leader indices," Finance Research Letters, Elsevier, vol. 45(C).
    11. Wang, Yilei & Cheng, Sheng & Cao, Yan, 2022. "How does economic policy uncertainty respond to the global oil price fluctuations? Evidence from BRICS countries," Resources Policy, Elsevier, vol. 79(C).
    12. Szafranek, Karol & Szafrański, Grzegorz & Leszczyńska-Paczesna, Agnieszka, 2024. "Inflation returns. Revisiting the role of external and domestic shocks with Bayesian structural VAR," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 789-810.
    13. Li, Sufang & Tu, Dalun & Zeng, Yan & Gong, Chenggang & Yuan, Di, 2022. "Does geopolitical risk matter in crude oil and stock markets? Evidence from disaggregated data," Energy Economics, Elsevier, vol. 113(C).
    14. Wu, Tao & An, Feng & Gao, Xiangyun & Wang, Ze, 2023. "Hidden causality between oil prices and exchange rates," Resources Policy, Elsevier, vol. 82(C).
    15. Zhang, Jiahao & Zhang, Yifeng & Wei, Yu & Wang, Zhuo, 2024. "Normal and extreme impact and connectedness between fossil energy futures markets and uncertainties: Does El Niño-Southern Oscillation matter?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 188-215.
    16. Szafranek Karol & Rubaszek Michał, 2024. "Have European natural gas prices decoupled from crude oil prices? Evidence from TVP-VAR analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(3), pages 507-530.
    17. Boubaker, Sabri & Goodell, John W. & Kumar, Satish & Sureka, Riya, 2023. "COVID-19 and finance scholarship: A systematic and bibliometric analysis," International Review of Financial Analysis, Elsevier, vol. 85(C).
    18. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    19. Dai, Zhifeng & Zhang, Xiaotong & Liang, Chao, 2024. "Efficient predictability of oil price: The role of VIX-based panic index shadow line difference," Energy Economics, Elsevier, vol. 129(C).
    20. Xiao, Jihong & Wang, Yudong, 2022. "Macroeconomic uncertainty, speculation, and energy futures returns: Evidence from a quantile regression," Energy, Elsevier, vol. 241(C).

    More about this item

    Keywords

    Energy market; Natural gas; Crude oil; Nonlinear focused time-delayed neural network;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922002495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.