IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp365-374.html
   My bibliography  Save this article

Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations

Author

Listed:
  • Wang, Jie
  • Wang, Jun

Abstract

In an attempt to improve the forecasting accuracy of crude oil price fluctuations, a new neural network architecture is established in this work which combines Multilayer perception and ERNN (Elman recurrent neural networks) with stochastic time effective function. ERNN is a time-varying predictive control system and is developed with the ability to keep memory of recent events in order to predict future output. The stochastic time effective function represents that the recent information has a stronger effect for the investors than the old information. With the established model the empirical research has a good performance in testing the predictive effects on four different time series indices. Compared to other models, the present model is possible to evaluate data from 1990s to today with extreme accuracy and speedy. The applied CID (complexity invariant distance) analysis and multiscale CID analysis, are provided as the new useful measures to evaluate a better predicting ability of the proposed model than other traditional models.

Suggested Citation

  • Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:365-374
    DOI: 10.1016/j.energy.2016.02.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301608
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tiansong & Wang, Jun & Zhang, Junhuan & Fang, Wen, 2011. "Voter interacting systems applied to Chinese stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2492-2506.
    2. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    3. Saif Ghouri, Salman, 2006. "Assessment of the relationship between oil prices and US oil stocks," Energy Policy, Elsevier, vol. 34(17), pages 3327-3333, November.
    4. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    5. Yoshio Kajitani & A. Ian Mcleod & Keith W. Hipel, 2005. "Forecasting nonlinear time series with feed-forward neural networks: a case study of Canadian lynx data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 105-117.
    6. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    7. Oberndorfer, Ulrich, 2009. "Energy prices, volatility, and the stock market: Evidence from the Eurozone," Energy Policy, Elsevier, vol. 37(12), pages 5787-5795, December.
    8. Yao Yu & Jun Wang, 2012. "Lattice-oriented percolation system applied to volatility behavior of stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 785-797, August.
    9. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    10. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    11. Xiao, Di & Wang, Jun, 2012. "Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4827-4838.
    12. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:rensus:v:81:y:2018:i:p1:p:306-312 is not listed on IDEAS
    2. repec:eee:energy:v:151:y:2018:i:c:p:875-888 is not listed on IDEAS
    3. Jiang, Meihui & An, Haizhong & Jia, Xiaoliang & Sun, Xiaoqi, 2017. "The influence of global benchmark oil prices on the regional oil spot market in multi-period evolution," Energy, Elsevier, vol. 118(C), pages 742-752.
    4. repec:eee:energy:v:127:y:2017:i:c:p:381-396 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:365-374. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.