IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange

Listed author(s):
  • Ebrahimpour, Reza
  • Nikoo, Hossein
  • Masoudnia, Saeed
  • Yousefi, Mohammad Reza
  • Ghaemi, Mohammad Sajjad
Registered author(s):

    A new method for forecasting the trend of time series, based on mixture of MLP experts, is presented. In this paper, three neural network combining methods and an Adaptive Network-Based Fuzzy Inference System (ANFIS) are applied to trend forecasting in the Tehran stock exchange. There are two experiments in this study. In experiment I, the time series data are the Kharg petrochemical company's daily closing prices on the Tehran stock exchange. In this case study, which considers different schemes for forecasting the trend of the time series, the recognition rates are 75.97%, 77.13% and 81.64% for stacked generalization, modified stacked generalization and ANFIS, respectively. Using the mixture of MLP experts (ME) scheme, the recognition rate is strongly increased to 86.35%. A gain and loss analysis is also used, showing the relative forecasting success of the ME method with and without rejection criteria, compared to a simple buy and hold approach. In experiment II, the time series data are the daily closing prices of 37 companies on the Tehran stock exchange. This experiment is conducted to verify the results of experiment I and to show the efficiency of the ME method compared to stacked generalization, modified stacked generalization and ANFIS.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Journal of Forecasting.

    Volume (Year): 27 (2011)
    Issue (Month): 3 (July)
    Pages: 804-816

    in new window

    Handle: RePEc:eee:intfor:v:27:y::i:3:p:804-816
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Balkin, Sandy D. & Ord, J. Keith, 2000. "Automatic neural network modeling for univariate time series," International Journal of Forecasting, Elsevier, vol. 16(4), pages 509-515.
    2. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    3. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:3:p:804-816. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.