IDEAS home Printed from
   My bibliography  Save this article

Phase and multifractality analyses of random price time series by finite-range interacting biased voter system


  • Hongli Niu
  • Jun Wang



A random financial price process which is developed by mechanisms of finite-range interacting biased voter model is considered in the present paper. Voter model is one of statistical physics systems as well as a continuous time Markov process, which originally represents a voter’s attitude on a particular topic, namely, voters reconsider their opinions at times distributed according to independent exponential random variables. The empirical mode decomposition method is employed to analyze the behaviors of logarithmic returns for the simulation data of the model and the two real market indexes, Shanghai Composite Index and Deutscher Aktien Index. The multifractal characteristics of the original returns and first 3 intrinsic mode functions (IMFs) after empirical mode decomposition are explored by the multifractal detrended function analysis. The instantaneous phase, amplitude probability distribution of first 4 IMFs, and the multifractal properties of instantaneous amplitude are investigated. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Hongli Niu & Jun Wang, 2014. "Phase and multifractality analyses of random price time series by finite-range interacting biased voter system," Computational Statistics, Springer, vol. 29(5), pages 1045-1063, October.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1045-1063
    DOI: 10.1007/s00180-014-0479-0

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    2. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, December.
    3. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifractal Volatility," Elsevier Monographs, Elsevier, edition 1, number 9780121500139.
    4. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148,
    5. Bolgorian, Meysam & Raei, Reza, 2011. "A multifractal detrended fluctuation analysis of trading behavior of individual and institutional traders in Tehran stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3815-3825.
    6. Wang, Tiansong & Wang, Jun & Zhang, Junhuan & Fang, Wen, 2011. "Voter interacting systems applied to Chinese stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2492-2506.
    7. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    8. Lux, Thomas, 2012. "Estimation of an agent-based model of investor sentiment formation in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1284-1302.
    9. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW).
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Dariusz Grech & Grzegorz Pamula, 2011. "How much multifractality is included in monofractal signals?," Papers 1108.1951,, revised Sep 2011.
    12. Yao Yu & Jun Wang, 2012. "Lattice-oriented percolation system applied to volatility behavior of stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 785-797, August.
    13. Grech, Dariusz & Mazur, Zygmunt, 2013. "On the scaling ranges of detrended fluctuation analysis for long-term memory correlated short series of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2384-2397.
    14. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    15. Xiao, Di & Wang, Jun, 2012. "Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4827-4838.
    16. Juan Luis Lopez & Jesus Guillermo Contreras, 2013. "Performance of multifractal detrended fluctuation analysis on short time series," Papers 1311.2278,
    17. Ying-Hui Shao & Gao Feng Gu & Zhi-Qiang Jiang & Wei-Xing Zhou & Didier Sornette, 2012. "Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series," Papers 1208.4158,
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1045-1063. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.