IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Physics of Finance

Listed author(s):
  • Kirill Ilinski

We give a brief introduction to the Gauge Theory of Arbitrage. Treating a calculation of Net Present Values (NPV) and currencies exchanges as a parallel transport in some fibre bundle, we give geometrical interpretation of the interest rate, exchange rates and prices of securities as a proper connection components. This allows us to map the theory of capital market onto the theory of quantized gauge field interacted with a money flow field. The gauge transformations of the matter field correspond to a dilatation of security units which effect is eliminated by a gauge transformation of the connection. The curvature tensor for the connection consists of the excess returns to the risk-free interest rate for the local arbitrage operation. Free quantum gauge theory is equivalent to the assumption about the log-normal walks of assets prices. In general case the consideration maps the capital market onto lattice QED.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number hep-th/9710148.

in new window

Date of creation: Oct 1997
Handle: RePEc:arx:papers:hep-th/9710148
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:hep-th/9710148. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.