IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Evaluating the predictive accuracy of volatility models"

by Jose A. Lopez

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Daniel Preve & Anders Eriksson & Jun Yu, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Finance Working Papers 23049, East Asian Bureau of Economic Research.
  2. Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
  3. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
  4. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
  5. repec:skb:wpaper:cofie-02-2007 is not listed on IDEAS
  6. Linlan Xiao, 2013. "Realized volatility forecasting: empirical evidence from stock market indices and exchange rates," Applied Financial Economics, Taylor & Francis Journals, vol. 23(1), pages 57-69, January.
  7. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
  8. Sucarrat, Genaro & Bauwens, Luc, 2008. "General to specific modelling of exchange rate volatility : a forecast evaluation," UC3M Working papers. Economics we081810, Universidad Carlos III de Madrid. Departamento de Economía.
  9. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
  10. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
  11. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
  12. Mike So & Rui Xu, 2013. "Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data," Asia-Pacific Financial Markets, Springer, vol. 20(1), pages 83-111, March.
  13. Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, EconWPA.
  14. Georgios Chortareas & John Nankervis & Ying Jiang, 2007. "Forecasting Exchange Rate Volatility with High Frequency Data: Is the Euro Different?," Money Macro and Finance (MMF) Research Group Conference 2006 79, Money Macro and Finance Research Group.
  15. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
  16. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, Elsevier.
  17. Thibaut Moyaert & Mikael Petitjean, 2011. "The performance of popular stochastic volatility option pricing models during the subprime crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 21(14), pages 1059-1068.
  18. Lahiri, Kajal & Yang, Liu, 2016. "Asymptotic variance of Brier (skill) score in the presence of serial correlation," Economics Letters, Elsevier, vol. 141(C), pages 125-129.
  19. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
  20. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
  21. Shcherba, Alexandr, 2012. "Market risk valuation modeling for the European countries at the financial crisis of 2008," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 27(3), pages 20-35.
  22. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  23. Odeh, Oluwarotimi O. & Featherstone, Allen M. & Sanjoy, Das, 2006. "Predicting Credit Default in an Agricultural Bank: Methods and Issues," 2006 Annual Meeting, February 5-8, 2006, Orlando, Florida 35359, Southern Agricultural Economics Association.
  24. Abounoori, Esmaiel & Elmi, Zahra (Mila) & Nademi, Younes, 2016. "Forecasting Tehran stock exchange volatility; Markov switching GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 264-282.
  25. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
  26. Jose A. Lopez, 1997. "Regulatory evaluation of value-at-risk models," Research Paper 9710, Federal Reserve Bank of New York.
  27. Umberto Triacca & Fulvia Focker, 2014. "Estimating overnight volatility of asset returns by using the generalized dynamic factor model approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 235-254, October.
  28. Alex Huang, 2011. "Volatility Modeling by Asymmetrical Quadratic Effect with Diminishing Marginal Impact," Computational Economics, Society for Computational Economics, vol. 37(3), pages 301-330, March.
  29. Gozgor, Giray & Nokay, Pinar, 2011. "Comparing forecast performances among volatility estimation methods in the pricing of european type currency options of USD-TL and Euro-TL," MPRA Paper 34369, University Library of Munich, Germany.
  30. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Forecasting sovereign default using panel models: A comparative analysis," Computing in Economics and Finance 2004 228, Society for Computational Economics.
  31. Grant, Andrew & Johnstone, David, 2010. "Finding profitable forecast combinations using probability scoring rules," International Journal of Forecasting, Elsevier, vol. 26(3), pages 498-510, July.
  32. G.R. Pasha & Tahira Qasim & Muhammad Aslam, 2007. "Estimating and Forecasting Volatility of Financial Time Series in Pakistan with GARCH-type Models," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 12(2), pages 115-149, Jul-Dec.
  33. de Goeij, P. C. & Marquering, W., 2009. "Stock and bond market interactions with level and asymmetry dynamics : An out-of-sample application," Other publications TiSEM fa1d33b9-7e68-4e15-b211-e, Tilburg University, School of Economics and Management.
  34. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
  35. Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
  36. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
  37. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
  38. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW).
  39. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
  40. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
  41. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
  42. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
  43. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
  44. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
  45. de Goeij, Peter & Marquering, Wessel, 2009. "Stock and bond market interactions with level and asymmetry dynamics: An out-of-sample application," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 318-329, March.
  46. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
  47. Giacomini, Raffaella, 2002. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests: Asymptotic and Bootstrap Methods," University of California at San Diego, Economics Working Paper Series qt59s2g5j5, Department of Economics, UC San Diego.
  48. Fuertes, Ana-Maria & Kalotychou, Elena, 2006. "Early warning systems for sovereign debt crises: The role of heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1420-1441, November.
  49. Francis X. Diebold & Jose A. Lopez, 1995. "Measuring Volatility Dynamics," NBER Technical Working Papers 0173, National Bureau of Economic Research, Inc.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.