IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v26yi3p498-510.html
   My bibliography  Save this article

Finding profitable forecast combinations using probability scoring rules

Author

Listed:
  • Grant, Andrew
  • Johnstone, David

Abstract

This study examines the success of bets on Australian Football League (AFL) matches made by identifying panels of highly proficient forecasters and betting on the basis of their pooled opinions. The data set is unusual, in that all forecasts are in the form of probabilities. Bets are made "on paper"Â against quoted market betting odds according to the (fractional) Kelly criterion. To identify expertise, individual forecasters are scored using conventional probability scoring rules, a "Kelly score"Â representing the forecaster's historical paper profits from Kelly-betting, and the more simplistic "categorical score"Â (number of misclassifications). Despite implicitly truncating all probabilities to either 0 or 1 before evaluation, and thus losing a lot of information, the categorical scoring rule appears to be a propitious way of ranking probability forecasters. Bootstrap significance tests indicate that this improvement is not attributable to chance.

Suggested Citation

  • Grant, Andrew & Johnstone, David, 2010. "Finding profitable forecast combinations using probability scoring rules," International Journal of Forecasting, Elsevier, vol. 26(3), pages 498-510, July.
  • Handle: RePEc:eee:intfor:v:26:y::i:3:p:498-510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(10)00005-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:reg:rpubli:259 is not listed on IDEAS
    2. Kenneth C. Lichtendahl, Jr. & Robert L. Winkler, 2007. "Probability Elicitation, Scoring Rules, and Competition Among Forecasters," Management Science, INFORMS, vol. 53(11), pages 1745-1755, November.
    3. Yuming Li, 1993. "Growth-Security Investment Strategy for Long and Short Runs," Management Science, INFORMS, vol. 39(8), pages 915-924, August.
    4. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data-Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    5. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    6. MacLean, Leonard C. & Sanegre, Rafael & Zhao, Yonggan & Ziemba, William T., 2004. "Capital growth with security," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 937-954, February.
    7. L. C. MacLean & W. T. Ziemba & G. Blazenko, 1992. "Growth Versus Security in Dynamic Investment Analysis," Management Science, INFORMS, vol. 38(11), pages 1562-1585, November.
    8. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    9. Graham, John R, 1996. "Is a Group of Economists Better than One? Than None?," The Journal of Business, University of Chicago Press, vol. 69(2), pages 193-232, April.
    10. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    11. David Johnstone, 2007. "Economic Darwinism: Who has the Best Probabilities?," Theory and Decision, Springer, vol. 62(1), pages 47-96, February.
    12. Robert L. Winkler, 1986. "Expert Resolution," Management Science, INFORMS, vol. 32(3), pages 298-303, March.
    13. Roy Batchelor & Pami Dua, 1995. "Forecaster Diversity and the Benefits of Combining Forecasts," Management Science, INFORMS, vol. 41(1), pages 68-75, January.
    14. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    15. Clemen, Robert T. & Murphy, Allan H. & Winkler, Robert L., 1995. "Screening probability forecasts: contrasts between choosing and combining," International Journal of Forecasting, Elsevier, vol. 11(1), pages 133-145, March.
    16. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    17. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    18. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    19. Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, vol. 24(1), pages 163-169.
    20. Clemon, Robert T & Winkler, Robert L, 1986. "Combining Economic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 39-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baker, Rose D. & McHale, Ian G., 2013. "Forecasting exact scores in National Football League games," International Journal of Forecasting, Elsevier, vol. 29(1), pages 122-130.
    2. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    3. Adi Schnytzer, 2011. "The Prediction Market for the Australian Football League," Working Papers 2011-15, Bar-Ilan University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:3:p:498-510. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.