IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i2p712-721.html
   My bibliography  Save this article

Efficiency of online football betting markets

Author

Listed:
  • Angelini, Giovanni
  • De Angelis, Luca

Abstract

This paper evaluates the efficiency of online betting markets for European (association) football leagues. The existing literature shows mixed empirical evidence regarding the degree to which betting markets are efficient. We propose a forecast-based approach for formally testing the efficiency of online betting markets. By considering the odds proposed by 41 bookmakers on 11 European major leagues over the last 11 years, we find evidence of differing degrees of efficiency among markets. We show that, if the best odds are selected across bookmakers, eight markets are efficient while three show inefficiencies that imply profit opportunities for bettors. In particular, our approach allows the estimation of the odds thresholds that could be used to set profitable betting strategies both ex post and ex ante.

Suggested Citation

  • Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:712-721
    DOI: 10.1016/j.ijforecast.2018.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018301134
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexis Direr, 2013. "Are betting markets efficient? Evidence from European Football Championships," Applied Economics, Taylor & Francis Journals, vol. 45(3), pages 343-356, January.
    2. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630, April.
    3. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    4. Ioannis Asimakopoulos & John Goddard, 2004. "Forecasting football results and the efficiency of fixed-odds betting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(1), pages 51-66.
    5. James Reade, 2014. "Information And Predictability: Bookmakers, Prediction Markets And Tipsters As Forecasters," Journal of Prediction Markets, University of Buckingham Press, vol. 8(1), pages 43-76.
    6. Egon Franck & Erwin Verbeek & Stephan Nüesch, 2013. "Inter-market Arbitrage in Betting," Economica, London School of Economics and Political Science, vol. 80(318), pages 300-325, April.
    7. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2010. "Alternative methods of predicting competitive events: An application in horserace betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 518-536, July.
    8. repec:wly:jforec:v:36:y:2017:i:7:p:795-807 is not listed on IDEAS
    9. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, March.
    10. Štrumbelj, Erik & Vračar, Petar, 2012. "Simulating a basketball match with a homogeneous Markov model and forecasting the outcome," International Journal of Forecasting, Elsevier, vol. 28(2), pages 532-542.
    11. Woodland, Linda M & Woodland, Bill M, 1994. " Market Efficiency and the Favorite-Longshot Bias: The Baseball Betting Market," Journal of Finance, American Finance Association, vol. 49(1), pages 269-279, March.
    12. Boulier, Bryan L. & Stekler, H. O., 2003. "Predicting the outcomes of National Football League games," International Journal of Forecasting, Elsevier, vol. 19(2), pages 257-270.
    13. Linda M. Woodland & Bill M. Woodland, 2001. "Market Efficiency and Profitable Wagering in the National Hockey League: Can Bettors Score on Longshots?," Southern Economic Journal, Southern Economic Association, vol. 67(4), pages 983-995, April.
    14. Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
    15. Giovanni Angelini & Luca De Angelis, 2017. "PARX model for football match predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
    16. Ioannidis, C. & Peel, D.A., 2005. "Testing for market efficiency in gambling markets when the errors are non-normal and heteroskedastic an application of the wild bootstrap," Economics Letters, Elsevier, vol. 87(2), pages 221-226, May.
    17. Ryall, Richard & Bedford, Anthony, 2010. "An optimized ratings-based model for forecasting Australian Rules football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 511-517, July.
    18. Dixon, Mark J. & Pope, Peter F., 2004. "The value of statistical forecasts in the UK association football betting market," International Journal of Forecasting, Elsevier, vol. 20(4), pages 697-711.
    19. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630.
    20. Forrest, David & Simmons, Robert, 2000. "Forecasting sport: the behaviour and performance of football tipsters," International Journal of Forecasting, Elsevier, vol. 16(3), pages 317-331.
    21. Siem Jan Koopman & Rutger Lit, 2015. "A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
    22. Franck, Egon & Verbeek, Erwin & Nüesch, Stephan, 2010. "Prediction accuracy of different market structures -- bookmakers versus a betting exchange," International Journal of Forecasting, Elsevier, vol. 26(3), pages 448-459, July.
    23. Forrest, David & Goddard, John & Simmons, Robert, 2005. "Odds-setters as forecasters: The case of English football," International Journal of Forecasting, Elsevier, vol. 21(3), pages 551-564.
    24. Grant, Andrew & Johnstone, David, 2010. "Finding profitable forecast combinations using probability scoring rules," International Journal of Forecasting, Elsevier, vol. 26(3), pages 498-510, July.
    25. Hurley, William & McDonough, Lawrence, 1995. "A Note on the Hayek Hypothesis and the Favorite-Longshot Bias in Parimutuel Betting," American Economic Review, American Economic Association, vol. 85(4), pages 949-955, September.
    26. Pope, Peter F & Peel, David A, 1989. "Information, Prices and Efficiency in a Fixed-Odds Betting Market," Economica, London School of Economics and Political Science, vol. 56(223), pages 323-341, August.
    27. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    28. Martin Spann & Bernd Skiera, 2009. "Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 55-72.
    29. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    30. Thaler, Richard H & Ziemba, William T, 1988. "Parimutuel Betting Markets: Racetracks and Lotteries," Journal of Economic Perspectives, American Economic Association, vol. 2(2), pages 161-174, Spring.
    31. Tim Kuypers, 2000. "Information and efficiency: an empirical study of a fixed odds betting market," Applied Economics, Taylor & Francis Journals, vol. 32(11), pages 1353-1363.
    32. Nikolaos Vlastakis & George Dotsis & Raphael N. Markellos, 2009. "How efficient is the European football betting market? Evidence from arbitrage and trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 426-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Merz & Raphael Flepp & Egon Franck, 2019. " Sonic Thunder vs Brian the Snail : Fast-sounding racehorse names and prediction accuracy in betting exchange markets," Working Papers 384, University of Zurich, Department of Business Administration (IBW).
    2. Dmitry Dagaev & Egor Stoyan, 2019. "Parimutuel Betting On The Esports Duels: Reverse Favourite-Longshot Bias And Its Determinants," HSE Working papers WP BRP 216/EC/2019, National Research University Higher School of Economics.
    3. Giovanni Angelini & Luca De Angelis & Carl Singleton, 2019. "Informational efficiency and price reaction within in-play prediction markets," Economics & Management Discussion Papers em-dp2019-20, Henley Business School, Reading University.
    4. Guy Elaad & J. James Reade & Carl Singleton, 2019. "Information, prices and efficiency in an online betting market," Economics & Management Discussion Papers em-dp2019-10, Henley Business School, Reading University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:712-721. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.