IDEAS home Printed from https://ideas.repec.org/a/bla/scotjp/v68y2021i2p261-285.html
   My bibliography  Save this article

Evaluating strange forecasts: The curious case of football match scorelines

Author

Listed:
  • J. James Reade
  • Carl Singleton
  • Alasdair Brown

Abstract

This study analyses point forecasts of exact scoreline outcomes for football matches in the English Premier League. These forecasts were made for distinct competitions and originally judged differently. We compare these with implied probability forecasts using bookmaker odds and a crowd of tipsters, as well as point and probability forecasts generated from a statistical model. From evaluating these sources and types of forecast, using various methods, we argue that regression encompassing is the most appropriate way to compare point and probability forecasts, and find that both these types of forecasts for football match scorelines generally add information to one another.

Suggested Citation

  • J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
  • Handle: RePEc:bla:scotjp:v:68:y:2021:i:2:p:261-285
    DOI: 10.1111/sjpe.12264
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjpe.12264
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjpe.12264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Fair, Ray C & Shiller, Robert J, 1989. "The Informational Context of Ex Ante Forecasts," The Review of Economics and Statistics, MIT Press, vol. 71(2), pages 325-331, May.
    3. Michael Cain & David Law & David Peel, 2000. "The Favourite‐Longshot Bias and Market Efficiency in UK Football betting," Scottish Journal of Political Economy, Scottish Economic Society, vol. 47(1), pages 25-36, February.
    4. Peeters, Thomas, 2018. "Testing the Wisdom of Crowds in the field: Transfermarkt valuations and international soccer results," International Journal of Forecasting, Elsevier, vol. 34(1), pages 17-29.
    5. Forrest, David & Simmons, Robert, 2000. "Forecasting sport: the behaviour and performance of football tipsters," International Journal of Forecasting, Elsevier, vol. 16(3), pages 317-331.
    6. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630, April.
    7. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    8. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    9. Strumbelj, E. & Sikonja, M. Robnik, 2010. "Online bookmakers' odds as forecasts: The case of European soccer leagues," International Journal of Forecasting, Elsevier, vol. 26(3), pages 482-488, July.
    10. Fawcett, Nicholas & Koerber, Lena & Masolo, Riccardo & Waldron, Matthew, 2015. "Evaluating UK point and density forecasts from an estimated DSGE model: the role of off-model information over the financial crisis," Bank of England working papers 538, Bank of England.
    11. James Reade, 2014. "Information And Predictability: Bookmakers, Prediction Markets And Tipsters As Forecasters," Journal of Prediction Markets, University of Buckingham Press, vol. 8(1), pages 43-76.
    12. Andreas Heuer & Oliver Rubner, 2012. "How Does the Past of a Soccer Match Influence Its Future? Concepts and Statistical Analysis," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    13. Forrest, David & Goddard, John & Simmons, Robert, 2005. "Odds-setters as forecasters: The case of English football," International Journal of Forecasting, Elsevier, vol. 21(3), pages 551-564.
    14. Leighton Vaughan Williams & Ming‐Chien Sung & Peter A. F. Fraser‐Mackenzie & John Peirson & Johnnie E. V. Johnson, 2018. "Towards an Understanding of the Origins of the Favourite–Longshot Bias: Evidence from Online Poker Markets, a Real‐money Natural Laboratory," Economica, London School of Economics and Political Science, vol. 85(338), pages 360-382, April.
    15. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    16. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    17. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    18. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    19. Klaassen, Franc J. G. M. & Magnus, Jan R., 2003. "Forecasting the winner of a tennis match," European Journal of Operational Research, Elsevier, vol. 148(2), pages 257-267, July.
    20. M. J. Maher, 1982. "Modelling association football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 36(3), pages 109-118, September.
    21. Pope, Peter F & Peel, David A, 1989. "Information, Prices and Efficiency in a Fixed-Odds Betting Market," Economica, London School of Economics and Political Science, vol. 56(223), pages 323-341, August.
    22. O'Leary, Daniel E., 2017. "Crowd performance in prediction of the World Cup 2014," European Journal of Operational Research, Elsevier, vol. 260(2), pages 715-724.
    23. Julia Campos & David F. Hendry & Hans‐Martin Krolzig, 2003. "Consistent Model Selection by an Automatic Gets Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 803-819, December.
    24. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    25. Elaad, Guy & Reade, J. James & Singleton, Carl, 2020. "Information, prices and efficiency in an online betting market," Finance Research Letters, Elsevier, vol. 35(C).
    26. Babatunde Buraimo & David Peel & Rob Simmons, 2013. "Systematic Positive Expected Returns in the UK Fixed Odds Betting Market: An Analysis of the Fink Tank Predictions," IJFS, MDPI, vol. 1(4), pages 1-15, December.
    27. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    28. Akhtar, Sohail & Scarf, Philip, 2012. "Forecasting test cricket match outcomes in play," International Journal of Forecasting, Elsevier, vol. 28(3), pages 632-643.
    29. Martin Spann & Bernd Skiera, 2009. "Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 55-72.
    30. D. Forrest & L. Perez, 2011. "Football pools and lotteries: substitute roads to riches?," Applied Economics Letters, Taylor & Francis Journals, vol. 18(13), pages 1253-1257.
    31. Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
    32. Dixon, Mark J. & Pope, Peter F., 2004. "The value of statistical forecasts in the UK association football betting market," International Journal of Forecasting, Elsevier, vol. 20(4), pages 697-711.
    33. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    34. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    35. Michael Clements, 2006. "Evaluating the survey of professional forecasters probability distributions of expected inflation based on derived event probability forecasts," Empirical Economics, Springer, vol. 31(1), pages 49-64, March.
    36. Peter Ayton & Dilek Onkal & Lisa McReynolds, 2011. "Effects of ignorance and information on judgments and decisions," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 6(5), pages 381-391, July.
    37. Karlis, Dimitris & Ntzoufras, Ioannis, 2005. "Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i10).
    38. del Corral, Julio & Prieto-Rodríguez, Juan, 2010. "Are differences in ranks good predictors for Grand Slam tennis matches?," International Journal of Forecasting, Elsevier, vol. 26(3), pages 551-563, July.
    39. Granger, C.W.J. & Pesaran, M. H., 1999. "Economic and Statistical Measures of Forecast Accuracy," Cambridge Working Papers in Economics 9910, Faculty of Economics, University of Cambridge.
    40. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630.
    41. Goddard, John, 2005. "Regression models for forecasting goals and match results in association football," International Journal of Forecasting, Elsevier, vol. 21(2), pages 331-340.
    42. Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meshael Batarfi & James Reade, 2021. "Why are We So Good At Football, and They So Bad? Institutions and National Footballing Performance," De Economist, Springer, vol. 169(1), pages 63-80, February.
    2. Sarah Jewell & J. James Reade & Carl Singleton, 2020. "It's Just Not Cricket: The Uncontested Toss and the Gentleman's Game," Economics Discussion Papers em-dp2020-10, Department of Economics, University of Reading.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. James Reade & Carl Singleton & Leighton Vaughan Williams, 2020. "Betting markets for English Premier League results and scorelines: evaluating a forecasting model," Economics Discussion Papers em-dp2020-03, Department of Economics, University of Reading.
    2. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    3. Philip Ramirez & J. James Reade & Carl Singleton, 2021. "Betting on a buzz, mispricing and inefficiency in online sportsbooks," Economics Discussion Papers em-dp2021-10, Department of Economics, University of Reading.
    4. He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
    5. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    6. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    7. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    8. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    9. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    10. Gross, Johannes & Rebeggiani, Luca, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," MPRA Paper 87230, University Library of Munich, Germany.
    11. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    12. Elaad, Guy & Reade, J. James & Singleton, Carl, 2020. "Information, prices and efficiency in an online betting market," Finance Research Letters, Elsevier, vol. 35(C).
    13. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    14. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    15. Pascal Flurin Meier & Raphael Flepp & Egon Franck, 2021. "Are sports betting markets semistrong efficient? Evidence from the COVID-19 pandemic," Working Papers 387, University of Zurich, Department of Business Administration (IBW).
    16. Sperb, Luis Felipe Costa & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2019. "Keeping a weather eye on prediction markets: The influence of environmental conditions on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 35(1), pages 321-335.
    17. Bernardo, Giovanni & Ruberti, Massimo & Verona, Roberto, 2019. "Semi-strong inefficiency in the fixed odds betting market: Underestimating the positive impact of head coach replacement in the main European soccer leagues," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 239-246.
    18. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    19. Franke, Maximilian, 2020. "Do market participants misprice lottery-type assets? Evidence from the European soccer betting market," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 1-18.
    20. Jinook Jeong & Jee Young Kim & Yoon Jae Ro, 2019. "On the efficiency of racetrack betting market: a new test for the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5817-5828, November.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Z2 - Other Special Topics - - Sports Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scotjp:v:68:y:2021:i:2:p:261-285. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sesssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sesssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.