IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Economic and Statistical Measures of Forecast Accuracy

  • Granger, C.W.J.
  • Pesaran, M. H.

This paper argues in favour of a closer link between decision and forecast evaluation problems. Although the idea of using decision theory for forecast evaluation appears early in the dynamic stochastic programming literature, and has continued to be used in meteorological forecasts, it is hardly mentioned in standard academic textbooks on economic forecasting. Some of the main issues involved are illustrated in the context of a two-state, two-action decision problem as well as in a more general setting. Relationships between statistical and economic methods of forecast evaluation are discussed and useful links between Kuipers score, used as a measure of forecast accuracy in the meteorology literature, and the market timing tests used in finance, are established. An empirical application to the problem of stock market predictability is also provided, and the conditions under which such predictability could be exploited in the presence of transaction costs are discussed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Jake Dyer)

Download Restriction: no

Paper provided by Faculty of Economics, University of Cambridge in its series Cambridge Working Papers in Economics with number 9910.

in new window

Date of creation: May 1999
Date of revision:
Handle: RePEc:cam:camdae:9910
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Campbell, John, 1987. "Stock Returns and the Term Structure," Scholarly Articles 3207699, Harvard University Department of Economics.
  2. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-90, June.
  3. John Y. Campbell & Luis M. Viceira, 1996. "Consumption and Portfolio Decisions When Expected Returns are Time Varying," NBER Working Papers 5857, National Bureau of Economic Research, Inc.
  4. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  5. Kenneth D. West & Hali J. Edison & Dongchul Cho, 1992. "A Utility Based Comparison of Some Models of Exchange Rate Volatility," NBER Technical Working Papers 0128, National Bureau of Economic Research, Inc.
  6. Granger, C.W.J. & Pesaran, H., 1996. "A Decision_Theoretic Approach to Forecast Evaluation," Cambridge Working Papers in Economics 9618, Faculty of Economics, University of Cambridge.
  7. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-65, October.
  8. Black, Angela & Fraser, Patricia, 1995. "U.K. Stock Returns: Predictability and Business Conditions," The Manchester School of Economic & Social Studies, University of Manchester, vol. 63(0), pages 85-102, Suppl..
  9. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-71, Sept.-Oct.
  10. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423.
  11. Pesaran, M.H. & Timmermann, A., 1992. "Forecasting Stock Returns," Cambridge Working Papers in Economics 9216, Faculty of Economics, University of Cambridge.
  12. Granger, Clive W. J., 1992. "Forecasting stock market prices: Lessons for forecasters," International Journal of Forecasting, Elsevier, vol. 8(1), pages 3-13, June.
  13. Weiss, Andrew A, 1996. "Estimating Time Series Models Using the Relevant Cost Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 539-60, Sept.-Oct.
  14. Balvers, Ronald J & Cosimano, Thomas F & McDonald, Bill, 1990. " Predicting Stock Returns in an Efficient Market," Journal of Finance, American Finance Association, vol. 45(4), pages 1109-28, September.
  15. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
  16. Clare, A D & Thomas, S H & Wickens, M R, 1994. "Is the Gilt-Equity Yield Ratio Useful for Predicting UK Stock Returns?," Economic Journal, Royal Economic Society, vol. 104(423), pages 303-15, March.
  17. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cam:camdae:9910. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.