IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v70y2017icp105-114.html
   My bibliography  Save this article

Prediction market prices under risk aversion and heterogeneous beliefs

Author

Listed:
  • He, Xue-Zhong
  • Treich, Nicolas

Abstract

In this paper, we examine the properties of prediction market prices when risk averse traders have heterogeneous beliefs in state probabilities. We show that the equilibrium state prices equal the mean beliefs of traders about that state if and only if the traders’ common utility function is logarithmic. We also provide a necessary and sufficient condition ensuring that the state prices are systematically below or above the mean beliefs of traders, thus providing a rational explanation to the favorite-longshot bias in prediction markets.

Suggested Citation

  • He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
  • Handle: RePEc:eee:mateco:v:70:y:2017:i:c:p:105-114
    DOI: 10.1016/j.jmateco.2017.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406817300484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2017.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manski, Charles F., 2006. "Interpreting the predictions of prediction markets," Economics Letters, Elsevier, vol. 91(3), pages 425-429, June.
    2. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630, April.
    3. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    4. Isabel Abinzano & Luis Muga & Rafael Santamaria, 2019. "Hidden Power of Trading Activity: The FLB in Tennis Betting Exchanges," Journal of Sports Economics, , vol. 20(2), pages 261-285, February.
    5. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    6. David Forrest & Ian Mchale, 2007. "Anyone for Tennis (Betting)?," The European Journal of Finance, Taylor & Francis Journals, vol. 13(8), pages 751-768.
    7. Leighton Vaughan Williams & Ming‐Chien Sung & Peter A. F. Fraser‐Mackenzie & John Peirson & Johnnie E. V. Johnson, 2018. "Towards an Understanding of the Origins of the Favourite–Longshot Bias: Evidence from Online Poker Markets, a Real‐money Natural Laboratory," Economica, London School of Economics and Political Science, vol. 85(338), pages 360-382, April.
    8. Marco Ottaviani & Peter Norman Sørensen, 2015. "Price Reaction to Information with Heterogeneous Beliefs and Wealth Effects: Underreaction, Momentum, and Reversal," American Economic Review, American Economic Association, vol. 105(1), pages 1-34, January.
    9. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    10. Kovalchik, Stephanie & Reid, Machar, 2019. "A calibration method with dynamic updates for within-match forecasting of wins in tennis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 756-766.
    11. Scheibehenne, Benjamin & Broder, Arndt, 2007. "Predicting Wimbledon 2005 tennis results by mere player name recognition," International Journal of Forecasting, Elsevier, vol. 23(3), pages 415-426.
    12. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    13. Kovalchik, Stephanie, 2020. "Extension of the Elo rating system to margin of victory," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1329-1341.
    14. Isabel Abinzano & Luis Muga & Rafael Santamaria, 2016. "Game, set and match: the favourite-long shot bias in tennis betting exchanges," Applied Economics Letters, Taylor & Francis Journals, vol. 23(8), pages 605-608, May.
    15. Lahvicka, Jiri, 2013. "What Causes the Favorite-Longshot Bias? Further Evidence from Tennis," MPRA Paper 47905, University Library of Munich, Germany.
    16. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    17. Elaad, Guy & Reade, J. James & Singleton, Carl, 2020. "Information, prices and efficiency in an online betting market," Finance Research Letters, Elsevier, vol. 35(C).
    18. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2018. "Forecasting With Social Media: Evidence From Tweets On Soccer Matches," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1748-1763, July.
    19. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    20. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    21. del Corral, Julio & Prieto-Rodríguez, Juan, 2010. "Are differences in ranks good predictors for Grand Slam tennis matches?," International Journal of Forecasting, Elsevier, vol. 26(3), pages 551-563, July.
    22. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630.
    23. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    24. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    25. Peeters, Thomas, 2018. "Testing the Wisdom of Crowds in the field: Transfermarkt valuations and international soccer results," International Journal of Forecasting, Elsevier, vol. 34(1), pages 17-29.
    26. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    27. Ali, Mukhtar M, 1977. "Probability and Utility Estimates for Racetrack Bettors," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 803-815, August.
    28. Vaughan Williams, Leighton, 1999. "Information Efficiency in Betting Markets: A Survey," Bulletin of Economic Research, Wiley Blackwell, vol. 51(1), pages 1-30, January.
    29. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    30. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    31. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    32. Easton, Stephen & Uylangco, Katherine, 2010. "Forecasting outcomes in tennis matches using within-match betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 564-575, July.
    33. Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
    34. Štefan Lyócsa & Tomáš Výrost, 2018. "To bet or not to bet: a reality check for tennis betting market efficiency," Applied Economics, Taylor & Francis Journals, vol. 50(20), pages 2251-2272, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Filippin & Marco Mantovani, 2023. "Risk aversion and information aggregation in binary‐asset markets," Quantitative Economics, Econometric Society, vol. 14(2), pages 753-798, May.
    2. G. Bottazzi & D. Giachini, 2019. "Far from the madding crowd: collective wisdom in prediction markets," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1461-1471, September.
    3. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    4. Razvan Tarnaud, 2019. "Convergence within binary market scoring rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 1017-1050, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023. "Betting on a buzz: Mispricing and inefficiency in online sportsbooks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.
    2. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    3. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    4. J Reade & C Singleton & L Vaughan Williams, 2020. "Betting Markets for English Premier League Results and Scorelines: Evaluating a Simple Forecasting Model," Economic Issues Journal Articles, Economic Issues, vol. 25(1), pages 87-106, March.
    5. Ruud H. Koning & Renske Zijm, 2023. "Betting market efficiency and prediction in binary choice models," Annals of Operations Research, Springer, vol. 325(1), pages 135-148, June.
    6. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    7. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    8. Brown, Alasdair & Yang, Fuyu, 2019. "The wisdom of large and small crowds: Evidence from repeated natural experiments in sports betting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 288-296.
    9. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Ine!ciencies: Evidence from Twitter and Betfair," Working Papers 2016-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    10. Alasdair Brown & Dooruj Rambaccussing & James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Inefficiencies: Evidence from Twitter and Betfair," Economics Discussion Papers em-dp2016-01, Department of Economics, University of Reading.
    11. Yu, Dian & Gao, Jianjun & Wang, Tongyao, 2022. "Betting market equilibrium with heterogeneous beliefs: A prospect theory-based model," European Journal of Operational Research, Elsevier, vol. 298(1), pages 137-151.
    12. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico & Johnson, Johnnie E.V., 2018. "It takes all sorts: A heterogeneous agent explanation for prediction market mispricing," European Journal of Operational Research, Elsevier, vol. 270(2), pages 556-569.
    13. Kai Fischer & Justus Haucap, 2022. "Home advantage in professional soccer and betting market efficiency: The role of spectator crowds," Kyklos, Wiley Blackwell, vol. 75(2), pages 294-316, May.
    14. Tomi Ovaska & Albert J. Sumell, 2014. "Who Has The Advantage? An Economic Exploration of Winning in Men's Professional Tennis," The American Economist, Sage Publications, vol. 59(1), pages 34-51, May.
    15. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    16. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    17. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    18. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    19. Oliver Merz & Raphael Flepp & Egon Franck, 2019. "Does sentiment harm market efficiency? An empirical analysis using a betting exchange setting," Working Papers 381, University of Zurich, Department of Business Administration (IBW).
    20. Kai Fischer & Justus Haucap, 2020. "Betting Market Efficiency in the Presence of Unfamiliar Shocks: The Case of Ghost Games during the Covid-19 Pandemic," CESifo Working Paper Series 8526, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:70:y:2017:i:c:p:105-114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.