IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v35y2020ics1544612319306440.html
   My bibliography  Save this article

Information, prices and efficiency in an online betting market

Author

Listed:
  • Elaad, Guy
  • Reade, J. James
  • Singleton, Carl

Abstract

We contribute to the discussion on betting market efficiency by studying the odds (or prices) set by fifty-one online bookmakers, for the result outcomes in over 16,000 association football matches in England since 2010. Adapting a methodology typically used to evaluate forecast efficiency, we test the Efficient Market Hypothesis in this context. We find odds are generally not biased when compared against actual match outcomes, both in terms of favourite-longshot or outcome types. But individual bookmakers are not efficient. Their own odds do not appear to use fully the information contained in their competitors’ odds.

Suggested Citation

  • Elaad, Guy & Reade, J. James & Singleton, Carl, 2020. "Information, prices and efficiency in an online betting market," Finance Research Letters, Elsevier, vol. 35(C).
  • Handle: RePEc:eee:finlet:v:35:y:2020:i:c:s1544612319306440
    DOI: 10.1016/j.frl.2019.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612319306440
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ioannis Asimakopoulos & John Goddard, 2004. "Forecasting football results and the efficiency of fixed-odds betting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(1), pages 51-66.
    2. James Reade, 2014. "Information And Predictability: Bookmakers, Prediction Markets And Tipsters As Forecasters," Journal of Prediction Markets, University of Buckingham Press, vol. 8(1), pages 43-76.
    3. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    4. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    5. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    6. Forrest, David & Goddard, John & Simmons, Robert, 2005. "Odds-setters as forecasters: The case of English football," International Journal of Forecasting, Elsevier, vol. 21(3), pages 551-564.
    7. Pope, Peter F & Peel, David A, 1989. "Information, Prices and Efficiency in a Fixed-Odds Betting Market," Economica, London School of Economics and Political Science, vol. 56(223), pages 323-341, August.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    10. Thaler, Richard H & Ziemba, William T, 1988. "Parimutuel Betting Markets: Racetracks and Lotteries," Journal of Economic Perspectives, American Economic Association, vol. 2(2), pages 161-174, Spring.
    11. Tim Kuypers, 2000. "Information and efficiency: an empirical study of a fixed odds betting market," Applied Economics, Taylor & Francis Journals, vol. 32(11), pages 1353-1363.
    12. Nikolaos Vlastakis & George Dotsis & Raphael N. Markellos, 2009. "How efficient is the European football betting market? Evidence from arbitrage and trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 426-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. James Reade & Carl Singleton & Leighton Vaughan Williams, 2020. "Betting markets for English Premier League results and scorelines: evaluating a forecasting model," Economics Discussion Papers em-dp2020-03, Department of Economics, University of Reading.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    2. Giovanni Angelini & Luca De Angelis & Carl Singleton, 2019. "Informational efficiency and behaviour within in-play prediction markets," Economics Discussion Papers em-dp2019-20, Department of Economics, University of Reading.
    3. Gross, Johannes & Rebeggiani, Luca, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," MPRA Paper 87230, University Library of Munich, Germany.
    4. Alexis Direr, 2013. "Are betting markets efficient? Evidence from European Football Championships," Applied Economics, Taylor & Francis Journals, vol. 45(3), pages 343-356, January.
    5. Martin Spann & Bernd Skiera, 2009. "Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 55-72.
    6. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    7. Egon Franck & Erwin Verbeek & Stephan Nüesch, 2013. "Inter-market Arbitrage in Betting," Economica, London School of Economics and Political Science, vol. 80(318), pages 300-325, April.
    8. Maschke Mario & Schmidt Ulrich, 2011. "Das Wettmonopol in Deutschland: Status quo und Reformansätze," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 60(1), pages 110-124, April.
    9. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    10. Babatunde Buraimo & David Peel & Rob Simmons, 2013. "Systematic Positive Expected Returns in the UK Fixed Odds Betting Market: An Analysis of the Fink Tank Predictions," International Journal of Financial Studies, MDPI, Open Access Journal, vol. 1(4), pages 1-15, December.
    11. Jinook Jeong & Jee Young Kim & Yoon Jae Ro, 2019. "On the efficiency of racetrack betting market: a new test for the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5817-5828, November.
    12. Adrian R. Bell & Chris Brooks & David Matthews & Charles Sutcliffe, 2012. "Over the moon or sick as a parrot? The effects of football results on a club's share price," Applied Economics, Taylor & Francis Journals, vol. 44(26), pages 3435-3452, September.
    13. Carlos Gomez-Gonzalez & Julio Del Corral, 2018. "The betting market over time: overround and surebets in European football," Economics and Business Letters, Oviedo University Press, vol. 7(4), pages 129-136.
    14. Jakobsson, Robin & Karlsson, Niklas, 2007. "Testing Market Efficiency in a Fixed Odds Betting Market," Working Papers 2007:12, Örebro University, School of Business.
    15. Bernardo, Giovanni & Ruberti, Massimo & Verona, Roberto, 2019. "Semi-strong inefficiency in the fixed odds betting market: Underestimating the positive impact of head coach replacement in the main European soccer leagues," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 239-246.
    16. Franke, Maximilian, 2020. "Do market participants misprice lottery-type assets? Evidence from the European soccer betting market," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 1-18.
    17. Oliver Merz & Raphael Flepp & Egon Franck, 2019. "Does sentiment harm market efficiency? An empirical analysis using a betting exchange setting," Working Papers 381, University of Zurich, Department of Business Administration (IBW).
    18. Buhagiar, Ranier & Cortis, Dominic & Newall, Philip W.S., 2018. "Why do some soccer bettors lose more money than others?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 18(C), pages 85-93.
    19. Frank Daumann & Markus Breuer, 2011. "The Role of Information in Professional Football and the German Football Betting Market," Chapters, in: Wladimir Andreff (ed.), Contemporary Issues in Sports Economics, chapter 6, Edward Elgar Publishing.
    20. Christian Deutscher & David Winkelmann & Marius Otting, 2020. "Bookmakers' mispricing of the disappeared home advantage in the German Bundesliga after the COVID-19 break," Papers 2008.05417, arXiv.org, revised Aug 2020.

    More about this item

    Keywords

    Prediction markets; Efficient market hypothesis; Favourite-longshot bias; Forecast efficiency;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • Z29 - Other Special Topics - - Sports Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:35:y:2020:i:c:s1544612319306440. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/frl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.