IDEAS home Printed from
   My bibliography  Save this paper

Gambling on Momentum


  • Marius Ötting

    (Deparment of Business Administration and Economics and Department of Sport Science, Bielefeld University)

  • Christian Deutscher

    (Deparment of Business Administration and Economics and Department of Sport Science, Bielefeld University)

  • Carl Singleton

    (Department of Economics, University of Reading)

  • Luca De Angelis

    (Department of Economics, University of Bologna)


Sports betting markets are proven real-world laboratories to test theories of asset pricing anomalies and risky behaviour. Using a high-frequency dataset provided directly by a major bookmaker, containing the odds and amounts staked throughout German Bundesliga football matches, we test for evidence of momentum in the betting and pricing behaviour after equalising goals. We find that bettors see value in teams that have the apparent momentum, staking about 40\% more on them than teams that just conceded an equaliser. Still, there is no evidence that such perceived momentum matters on average for match outcomes or is associated with the bookmaker offering favourable odds. We also confirm that betting on the apparent momentum would lead to substantial losses for bettors.

Suggested Citation

  • Marius Ötting & Christian Deutscher & Carl Singleton & Luca De Angelis, 2022. "Gambling on Momentum," Economics Discussion Papers em-dp2022-10, Department of Economics, University of Reading.
  • Handle: RePEc:rdg:emxxdp:em-dp2022-10

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    • Marius Otting & Christian Deutscher & Carl Singleton & Luca De Angelis, 2022. "Gambling on Momentum," Papers 2211.06052,

    References listed on IDEAS

    1. Tobias J. Moskowitz, 2021. "Asset Pricing and Sports Betting," Journal of Finance, American Finance Association, vol. 76(6), pages 3153-3209, December.
    2. Kevin Krieger & Justin L. Davis & James Strode, 2021. "Patience is a virtue: exploiting behavior bias in gambling markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(4), pages 735-750, October.
    3. Bar-Eli, Michael & Krumer, Alex & Morgulev, Elia, 2020. "Ask not what economics can do for sports - Ask what sports can do for economics," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    4. Nikolaos Vlastakis & George Dotsis & Raphael N. Markellos, 2009. "How efficient is the European football betting market? Evidence from arbitrage and trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 426-444.
    5. Durand, Robert B. & Patterson, Fernando M. & Shank, Corey A., 2021. "Behavioral biases in the NFL gambling market: Overreaction to news and the recency bias," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    6. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egon Franck & Erwin Verbeek & Stephan Nüesch, 2011. "Sentimental Preferences and the Organizational Regime of Betting Markets," Southern Economic Journal, John Wiley & Sons, vol. 78(2), pages 502-518, October.
    2. Kai Fischer & Justus Haucap, 2022. "Home advantage in professional soccer and betting market efficiency: The role of spectator crowds," Kyklos, Wiley Blackwell, vol. 75(2), pages 294-316, May.
    3. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    4. Babatunde Buraimo & David Peel & Rob Simmons, 2013. "Systematic Positive Expected Returns in the UK Fixed Odds Betting Market: An Analysis of the Fink Tank Predictions," IJFS, MDPI, vol. 1(4), pages 1-15, December.
    5. Carlos Gomez-Gonzalez & Julio del Corral, 2018. "The betting market over time: overround and surebets in European football," Economics and Business Letters, Oviedo University Press, vol. 7(4), pages 129-136.
    6. Egon Franck & Erwin Verbeek & Stephan Nüesch, 2013. "Inter-market Arbitrage in Betting," Economica, London School of Economics and Political Science, vol. 80(318), pages 300-325, April.
    7. Kai Fischer & Justus Haucap, 2020. "Betting Market Efficiency in the Presence of Unfamiliar Shocks: The Case of Ghost Games during the Covid-19 Pandemic," CESifo Working Paper Series 8526, CESifo.
    8. Pascal Flurin Meier & Raphael Flepp & Egon Franck, 2021. "Are sports betting markets semistrong efficient? Evidence from the COVID-19 pandemic," Working Papers 387, University of Zurich, Department of Business Administration (IBW).
    9. Elaad, Guy & Reade, J. James & Singleton, Carl, 2020. "Information, prices and efficiency in an online betting market," Finance Research Letters, Elsevier, vol. 35(C).
    10. Dominic Cortis & Steve Hales & Frank Bezzina, 2013. "Profiting On Inefficiencies In Betting Derivative Markets: The Case Of Uefa Euro 2012," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 7(1), pages 39-51.
    11. Rebeggiani, Luca & Gross, Johannes, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181563, Verein für Socialpolitik / German Economic Association.
    12. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    13. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    14. Hofer, Vera & Leitner, Johannes, 2017. "Relative pricing of binary options in live soccer betting markets," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 66-85.
    15. Montone, Maurizio, 2021. "Optimal pricing in the online betting market," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 344-363.
    16. Luca De Angelis & J. James Reade, 2022. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Economics Discussion Papers em-dp2022-01, Department of Economics, University of Reading.
    17. Braun, Sebastian & Kvasnicka, Michael, 2008. "Against All Odds? – National Sentiment and Wagering on European Football," Ruhr Economic Papers 42, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. Lahvicka, Jiri, 2013. "The Fibonacci Strategy Revisited: Can You Really Make Money by Betting on Soccer Draws?," MPRA Paper 47649, University Library of Munich, Germany.
    19. Barge-Gil, Andrés & García-Hiernaux, Alfredo, 2019. "Staking plans in sports betting under unknown true probabilities of the event," MPRA Paper 92196, University Library of Munich, Germany.
    20. Jeremy Sandford & Paul Shea, 2013. "Optimal Setting of Point Spreads," Economica, London School of Economics and Political Science, vol. 80(317), pages 149-170, January.

    More about this item


    Behavioural bias; Betting markets; Market efficiency; Momentum; Risk-taking;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism
    • Z2 - Other Special Topics - - Sports Economics


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:emxxdp:em-dp2022-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexander Mihailov (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.