IDEAS home Printed from https://ideas.repec.org/p/bot/quadip/wpaper132.html

PARX model for football matches predictions

Author

Listed:
  • Giovanni Angelini

    (Università di Bologna)

  • Luca De Angelis

    (Università di Bologna)

Abstract

We propose an innovative approach to model and predict the outcome of football matches based on the Poisson Autoregression with eXogenous covariates (PARX) model recently proposed by Agosto, Cavaliere, Kristensen and Rahbek (2016). We show that this methodology is particularly suited to model the goals distribution of a football team and provides a good forecast performance that can be exploited to develop a profitable betting strategy. The betting strategy is based on the idea that the odds proposed by the market do not reflect the true probability of the match because they may incorporate also the betting volumes or strategic price settings in order to exploit bettors’ biases. The out-of-sample performance of the PARX model is better than the reference approach by Dixon and Coles (1997). We also evaluate our approach in a simple betting strategy which is applied to the English football Premier League data for the 2013/2014 and 2014/2015 seasons. The results show that the return from the betting strategy is larger than 35% in all the cases considered and may even exceed 100% if we consider an alternative strategy based on a predetermined threshold which allows to exploit the inefficiency of the betting market.

Suggested Citation

  • Giovanni Angelini & Luca De Angelis, 2016. "PARX model for football matches predictions," Quaderni di Dipartimento 2, Department of Statistics, University of Bologna.
  • Handle: RePEc:bot:quadip:wpaper:132
    as

    Download full text from publisher

    File URL: http://amsacta.unibo.it/id/eprint/5408
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
    2. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    3. Koopman, Siem Jan & Lit, Rutger, 2019. "Forecasting football match results in national league competitions using score-driven time series models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
    4. Andrei Shynkevich, 2022. "Informational efficiency of football transfer market," Economics Bulletin, AccessEcon, vol. 42(2), pages 1032-1039.
    5. Raffaele Mattera, 2023. "Forecasting binary outcomes in soccer," Annals of Operations Research, Springer, vol. 325(1), pages 115-134, June.
    6. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    7. Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
    8. David Winkelmann & Marius Ötting & Christian Deutscher & Tomasz Makarewicz, 2024. "Are Betting Markets Inefficient? Evidence From Simulations and Real Data," Journal of Sports Economics, , vol. 25(1), pages 54-97, January.
    9. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2024. "Specifications tests for count time series models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1014-1040, December.
    10. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    11. Alberto Arcagni & Vincenzo Candila & Rosanna Grassi, 2023. "A new model for predicting the winner in tennis based on the eigenvector centrality," Annals of Operations Research, Springer, vol. 325(1), pages 615-632, June.
    12. Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bot:quadip:wpaper:132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michela Mengoli (email available below). General contact details of provider: https://edirc.repec.org/data/dsbolit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.