IDEAS home Printed from https://ideas.repec.org/p/ags/saeaso/35359.html
   My bibliography  Save this paper

Predicting Credit Default in an Agricultural Bank: Methods and Issues

Author

Listed:
  • Odeh, Oluwarotimi O.
  • Featherstone, Allen M.
  • Sanjoy, Das

Abstract

This study examines the performance of logistic regression, artificial neural networks and adaptive neuro-fuzzy inference system in predicting credit default using data from Farm Credit System. Empirical findings show that credit default predictions vary with empirical model used.

Suggested Citation

  • Odeh, Oluwarotimi O. & Featherstone, Allen M. & Sanjoy, Das, 2006. "Predicting Credit Default in an Agricultural Bank: Methods and Issues," 2006 Annual Meeting, February 5-8, 2006, Orlando, Florida 35359, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saeaso:35359
    DOI: 10.22004/ag.econ.35359
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/35359/files/sp06od02.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.35359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Malhotra, Rashmi & Malhotra, D. K., 2002. "Differentiating between good credits and bad credits using neuro-fuzzy systems," European Journal of Operational Research, Elsevier, vol. 136(1), pages 190-211, January.
    2. Jacobson, Tor & Roszbach, Kasper, 2003. "Bank lending policy, credit scoring and value-at-risk," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 615-633, April.
    3. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    4. Terry L. Kastens & Allen M. Featherstone, 1996. "Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 400-415.
    5. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    6. Dorsey, Robert E & Mayer, Walter J, 1995. "Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
    7. Ani L. Katchova & Peter J. Barry, 2005. "Credit Risk Models and Agricultural Lending," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 194-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huseyin Ince & Bora Aktan, 2009. "A comparison of data mining techniques for credit scoring in banking: A managerial perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(3), pages 233-240, March.
    2. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    3. Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
    4. Amelie Jouault & Allen M. Featherstone, 2011. "Determining the Probability of Default of Agricultural Loans in a French Bank," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 1(1), pages 1-1.
    5. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    6. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    7. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    8. Tuan, Tran Huu & Navrud, Stale, 2009. "Applying the dissonance-minimising format to value cultural heritage in developing countries," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 1-17.
    9. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    10. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    11. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Forecasting sovereign default using panel models: A comparative analysis," Computing in Economics and Finance 2004 228, Society for Computational Economics.
    12. Andrea C. Hupman, 2022. "Cutoff Threshold Decisions for Classification Algorithms with Risk Aversion," Decision Analysis, INFORMS, vol. 19(1), pages 63-78, March.
    13. Liu, Yu-Hsin, 2011. "Incorporating scatter search and threshold accepting in finding maximum likelihood estimates for the multinomial probit model," European Journal of Operational Research, Elsevier, vol. 211(1), pages 130-138, May.
    14. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    15. Petr Hájek, 2012. "Credit rating analysis using adaptive fuzzy rule-based systems: an industry-specific approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 421-434, September.
    16. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    17. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    18. Beenstock, Michael & Szpiro, George, 2002. "Specification search in nonlinear time-series models using the genetic algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 26(5), pages 811-835, May.
    19. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    20. Max Jerrell, 2000. "Applications Of Public Global Optimization Software To Difficult Econometric Functions," Computing in Economics and Finance 2000 161, Society for Computational Economics.

    More about this item

    Keywords

    Agricultural Finance;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saeaso:35359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.