IDEAS home Printed from https://ideas.repec.org/a/taf/jbemgt/v10y2009i3p233-240.html
   My bibliography  Save this article

A comparison of data mining techniques for credit scoring in banking: A managerial perspective

Author

Listed:
  • Huseyin Ince
  • Bora Aktan

Abstract

Credit scoring is a very important task for lenders to evaluate the loan applications they receive from consumers as well as for insurance companies, which use scoring systems today to evaluate new policyholders and the risks these prospective customers might present to the insurer. Credit scoring systems are used to model the potential risk of loan applications, which have the advantage of being able to handle a large volume of credit applications quickly with minimal labour, thus reducing operating costs, and they may be an effective substitute for the use of judgment among inexperienced loan officers, thus helping to control bad debt losses. This study explores the performance of credit scoring models using traditional and artificial intelligence approaches: discriminant analysis, logistic regression, neural networks and classification and regression trees. Experimental studies using real world data sets have demonstrated that the classification and regression trees and neural networks outperform the traditional credit scoring models in terms of predictive accuracy and type II errors.

Suggested Citation

  • Huseyin Ince & Bora Aktan, 2009. "A comparison of data mining techniques for credit scoring in banking: A managerial perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(3), pages 233-240, March.
  • Handle: RePEc:taf:jbemgt:v:10:y:2009:i:3:p:233-240
    DOI: 10.3846/1611-1699.2009.10.233-240
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3846/1611-1699.2009.10.233-240
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.3846/1611-1699.2009.10.233-240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Malhotra, Rashmi & Malhotra, D. K., 2002. "Differentiating between good credits and bad credits using neuro-fuzzy systems," European Journal of Operational Research, Elsevier, vol. 136(1), pages 190-211, January.
    3. Jacobson, Tor & Roszbach, Kasper, 2003. "Bank lending policy, credit scoring and value-at-risk," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 615-633, April.
    4. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    5. Jae-Chan Kim & Dae-Ho Kim & Jae-Jun Kim & Jong-Suk Ye & Hyun-Soo Lee, 2000. "Segmenting the Korean housing market using multiple discriminant analysis," Construction Management and Economics, Taylor & Francis Journals, vol. 18(1), pages 45-54.
    6. Yang, Yingxu, 2007. "Adaptive credit scoring with kernel learning methods," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1521-1536, December.
    7. Trevino, Len J. & Daniels, John D., 1995. "FDI theory and foreign direct investment in the United States: a comparison of investors and non-investors," International Business Review, Elsevier, vol. 4(2), pages 177-194, June.
    8. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    9. Blochlinger, Andreas & Leippold, Markus, 2006. "Economic benefit of powerful credit scoring," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 851-873, March.
    10. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar H. Fares & Irfan Butt & Seung Hwan Mark Lee, 2023. "Utilization of artificial intelligence in the banking sector: a systematic literature review," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 28(4), pages 835-852, December.
    2. Ulf Römer & Oliver Musshoff, 2017. "Can agricultural credit scoring for microfinance institutions be implemented and improved by weather data?," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 78(1), pages 83-97, December.
    3. J. Lara‐Rubio & A. Blanco‐Oliver & R. Pino‐Mejías, 2017. "Promoting Entrepreneurship at the Base of the Social Pyramid via Pricing Systems: A case Study," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(1), pages 12-28, January.
    4. Tigges, Maximilian & Mestwerdt, Sönke & Tschirner, Sebastian & Mauer, René, 2024. "Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    5. Aneta Dzik-Walczak & Mateusz Heba, 2019. "A comparison of credit scoring techniques in Peer-to-Peer lending," Working Papers 2019-16, Faculty of Economic Sciences, University of Warsaw.
    6. Patricia Durango-Gutiérrez & Juan Lara-Rubio & Andrés Navarro-Galera & Dionisio Buendía-Carrillo, 2024. "Microcredit Pricing Model for Microfinance Institutions under Basel III Banking Regulations," IJFS, MDPI, vol. 12(3), pages 1-21, September.
    7. Antonio Blanco-Oliver & Ana Irimia-Dieguez & María Oliver-Alfonso & Nicholas Wilson, 2015. "Systemic Sovereign Risk and Asset Prices: Evidence from the CDS Market, Stressed European Economies and Nonlinear Causality Tests," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(2), pages 144-166, April.
    8. Oguz Koc & Omur Ugur & A. Sevtap Kestel, 2023. "The Impact of Feature Selection and Transformation on Machine Learning Methods in Determining the Credit Scoring," Papers 2303.05427, arXiv.org.
    9. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    10. Aneta Dzik-Walczak & Mateusz Heba, 2021. "An implementation of ensemble methods, logistic regression, and neural network for default prediction in Peer-to-Peer lending," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 39(1), pages 163-197.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    2. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    3. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    4. Evžen Kocenda & Martin Vojtek, 2011. "Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 80-98, November.
    5. Bücker, Michael & van Kampen, Maarten & Krämer, Walter, 2013. "Reject inference in consumer credit scoring with nonignorable missing data," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1040-1045.
    6. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    7. Lobna Abid & Afif Masmoudi & Sonia Zouari-Ghorbel, 2018. "The Consumer Loan’s Payment Default Predictive Model: an Application of the Logistic Regression and the Discriminant Analysis in a Tunisian Commercial Bank," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 948-962, September.
    8. Maria Rocha Sousa & João Gama & Elísio Brandão, 2013. "Introducing time-changing economics into credit scoring," FEP Working Papers 513, Universidade do Porto, Faculdade de Economia do Porto.
    9. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    10. Marshall, Andrew & Tang, Leilei & Milne, Alistair, 2010. "Variable reduction, sample selection bias and bank retail credit scoring," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 501-512, June.
    11. Odeh, Oluwarotimi O. & Featherstone, Allen M. & Sanjoy, Das, 2006. "Predicting Credit Default in an Agricultural Bank: Methods and Issues," 2006 Annual Meeting, February 5-8, 2006, Orlando, Florida 35359, Southern Agricultural Economics Association.
    12. K Rajaratnam & P Beling & G Overstreet, 2010. "Scoring decisions in the context of economic uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 421-429, March.
    13. Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
    14. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    15. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    16. Dinh, Thi Huyen Thanh & Kleimeier, Stefanie, 2007. "A credit scoring model for Vietnam's retail banking market," International Review of Financial Analysis, Elsevier, vol. 16(5), pages 471-495.
    17. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    18. Guotai Chi & Zhipeng Zhang, 2017. "Multi Criteria Credit Rating Model for Small Enterprise Using a Nonparametric Method," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    19. Ibtissem Baklouti, 2014. "A Psychological Approach To Microfinance Credit Scoring Via A Classification And Regression Tree," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 193-208, October.
    20. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jbemgt:v:10:y:2009:i:3:p:233-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TBEM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.