IDEAS home Printed from
   My bibliography  Save this article

Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets


  • Andriosopoulos, Kostas
  • Nomikos, Nikos


This paper reproduces the performance of a geometric average Spot Energy Index by investing only in a subset of stocks from the Dow Jones Composite Average, the FTSE 100 and Bovespa Composite indexes, and in two pools that include only energy-sector stocks from the US and the UK respectively. Daily data are used and the index-tracking problem for passive investment is addressed with two evolutionary algorithms – the differential evolution algorithm and the genetic algorithm. The performance of the suggested investment strategy is tested under three different scenarios: buy-and-hold, quarterly and monthly rebalancing, accounting for transaction costs where necessary.

Suggested Citation

  • Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
  • Handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:571-582
    DOI: 10.1016/j.ejor.2013.09.006

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    4. Hammoudeh, Shawkat & Dibooglu, Sel & Aleisa, Eisa, 2004. "Relationships among U.S. oil prices and oil industry equity indices," International Review of Economics & Finance, Elsevier, vol. 13(4), pages 427-453.
    5. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    6. Bert Scholtens & Lei Wang, 2008. "Oil Risk in Oil Stocks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 89-112.
    7. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    8. Brad M. Barber & Terrance Odean, 2000. "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors," Journal of Finance, American Finance Association, vol. 55(2), pages 773-806, April.
    9. Malkiel, Burton G, 1995. "Returns from Investing in Equity Mutual Funds 1971 to 1991," Journal of Finance, American Finance Association, vol. 50(2), pages 549-572, June.
    10. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    11. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    12. Thiemo Krink & Sandra Paterlini, 2011. "Multiobjective optimization using differential evolution for real-world portfolio optimization," Computational Management Science, Springer, vol. 8(1), pages 157-179, April.
    13. Fama, Eugene F & French, Kenneth R, 1987. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums,and the Theory of Storage," The Journal of Business, University of Chicago Press, vol. 60(1), pages 55-73, January.
    14. Jin Zhang & Dietmar Maringer, 2010. "Index Mutual Fund Replication," Working Papers 035, COMISEF.
    15. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    16. Dorsey, Robert E & Mayer, Walter J, 1995. "Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Joëts, Marc, 2015. "Heterogeneous beliefs, regret, and uncertainty: The role of speculation in energy price dynamics," European Journal of Operational Research, Elsevier, vol. 247(1), pages 204-215.
    2. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    3. Nguyen, Quynh Nga & Aboura, Sofiane & Chevallier, Julien & Zhang, Lyuyuan & Zhu, Bangzhu, 2020. "Local Gaussian correlations in financial and commodity markets," European Journal of Operational Research, Elsevier, vol. 285(1), pages 306-323.
    4. Mellios, Constantin & Six, Pierre & Lai, Anh Ngoc, 2016. "Dynamic speculation and hedging in commodity futures markets with a stochastic convenience yield," European Journal of Operational Research, Elsevier, vol. 250(2), pages 493-504.
    5. Zhang, Yue-Jun & Chen, Ming-Ying, 2018. "Evaluating the dynamic performance of energy portfolios: Empirical evidence from the DEA directional distance function," European Journal of Operational Research, Elsevier, vol. 269(1), pages 64-78.
    6. Spiridon Penev & Pavel Shevchenko & Wei Wu, 2019. "Myopic robust index tracking with Bregman divergence," Papers 1908.07659,
    7. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    8. Jebabli, Ikram & Roubaud, David, 2018. "Time-varying efficiency in food and energy markets: Evidence and implications," Economic Modelling, Elsevier, vol. 70(C), pages 97-114.
    9. Zhang, Yue-Jun & Lin, Jia-Juan, 2019. "Can the VAR model outperform MRS model for asset allocation in commodity market under different risk preferences of investors?," International Review of Financial Analysis, Elsevier, vol. 66(C).
    10. Sant’Anna, Leonardo Riegel & Caldeira, João Frois & Filomena, Tiago Pascoal, 2020. "Lasso-based index tracking and statistical arbitrage long-short strategies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:571-582. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.