IDEAS home Printed from https://ideas.repec.org/p/mod/recent/056.html

Cardinality versus q-Norm Constraints for Index Tracking

Author

Listed:
  • Bjoern Fastrich

  • Sandra Paterlini

  • Peter Winker

Abstract

Index tracking aims at replicating a given benchmark with a smaller number of its constituents. Different quantitative models can be set up to determine the optimal index replicating portfolio. In this paper, we propose an alternative based on imposing a constraint on the q-norm, 0

Suggested Citation

  • Bjoern Fastrich & Sandra Paterlini & Peter Winker, 2011. "Cardinality versus q-Norm Constraints for Index Tracking," Center for Economic Research (RECent) 056, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
  • Handle: RePEc:mod:recent:056
    as

    Download full text from publisher

    File URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1679690
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    2. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
    3. de Paulo, Wanderlei Lima & de Oliveira, Estela Mara & do Valle Costa, Oswaldo Luiz, 2016. "Enhanced index tracking optimal portfolio selection," Finance Research Letters, Elsevier, vol. 16(C), pages 93-102.
    4. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
    5. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    6. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    7. Yu Zheng & Bowei Chen & Timothy M. Hospedales & Yongxin Yang, 2019. "Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach," Papers 1911.05052, arXiv.org, revised Nov 2019.
    8. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    9. Margherita Giuzio & Sandra Paterlini, 2019. "Un-diversifying during crises: Is it a good idea?," Computational Management Science, Springer, vol. 16(3), pages 401-432, July.
    10. Anubha Goel & Damir Filipovi'c & Puneet Pasricha, 2024. "Sparse Portfolio Selection via Topological Data Analysis based Clustering," Papers 2401.16920, arXiv.org, revised Dec 2024.
    11. Giuzio, Margherita & Ferrari, Davide & Paterlini, Sandra, 2016. "Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 251-261.
    12. Margherita Giuzio & Kay Eichhorn-Schott & Sandra Paterlini & Vincent Weber, 2018. "Tracking hedge funds returns using sparse clones," Annals of Operations Research, Springer, vol. 266(1), pages 349-371, July.
    13. Michele Bruni, 2011. "China’s New Demographic Challenge: From Unlimited Supply of Labour to Structural Lack of Labour Supply. Labour market and demographic scenarios: 2008-2048," Center for the Analysis of Public Policies (CAPP) 0082, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    14. Nakagawa, Kei & Suimon, Yoshiyuki, 2022. "Inflation rate tracking portfolio optimization method: Evidence from Japan," Finance Research Letters, Elsevier, vol. 49(C).
    15. Zhongming Wu & Guoyu Xie & Zhili Ge & Valentina De Simone, 2024. "Nonconvex multi-period mean-variance portfolio optimization," Annals of Operations Research, Springer, vol. 332(1), pages 617-644, January.
    16. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Sparsity and Stability for Minimum-Variance Portfolios," Papers 1910.11840, arXiv.org.
    17. Cesarone, F. & Di Paolo, A. & Bufalo, M. & Orlando, G., 2025. "A benchmark-asset principal component factorization for index tracking on large investment universes," Finance Research Letters, Elsevier, vol. 79(C).
    18. Dan Lou & Yuehan Yang, 2025. "Joint estimation of transfer learning on time series data," Statistical Papers, Springer, vol. 66(1), pages 1-19, January.
    19. Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
    20. Philipp J. Kremer & Sangkyun Lee & Malgorzata Bogdan & Sandra Paterlini, 2017. "Sparse Portfolio Selection via the sorted $\ell_{1}$-Norm," Papers 1710.02435, arXiv.org.
    21. Yu Zheng & Timothy M. Hospedales & Yongxin Yang, 2018. "Diversity and Sparsity: A New Perspective on Index Tracking," Papers 1809.01989, arXiv.org, revised Feb 2020.
    22. Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
    23. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:recent:056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/demodit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.