IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.02435.html
   My bibliography  Save this paper

Sparse Portfolio Selection via the sorted $\ell_{1}$-Norm

Author

Listed:
  • Philipp J. Kremer
  • Sangkyun Lee
  • Malgorzata Bogdan
  • Sandra Paterlini

Abstract

We introduce a financial portfolio optimization framework that allows us to automatically select the relevant assets and estimate their weights by relying on a sorted $\ell_1$-Norm penalization, henceforth SLOPE. Our approach is able to group constituents with similar correlation properties, and with the same underlying risk factor exposures. We show that by varying the intensity of the penalty, SLOPE can span the entire set of optimal portfolios on the risk-diversification frontier, from minimum variance to the equally weighted. To solve the optimization problem, we develop a new efficient algorithm, based on the Alternating Direction Method of Multipliers. Our empirical analysis shows that SLOPE yields optimal portfolios with good out-of-sample risk and return performance properties, by reducing the overall turnover through more stable asset weight estimates. Moreover, using the automatic grouping property of SLOPE, new portfolio strategies, such as SLOPE-MV, can be developed to exploit the data-driven detected similarities across assets.

Suggested Citation

  • Philipp J. Kremer & Sangkyun Lee & Malgorzata Bogdan & Sandra Paterlini, 2017. "Sparse Portfolio Selection via the sorted $\ell_{1}$-Norm," Papers 1710.02435, arXiv.org.
  • Handle: RePEc:arx:papers:1710.02435
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.02435
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bj�rn Fastrich & Sandra Paterlini & Peter Winker, 2014. "Cardinality versus q -norm constraints for index tracking," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 2019-2032, November.
    2. Giannone, Domenico & De Mol, Christine & Daubechies, Ingrid & Brodie, Joshua, 2007. "Sparse and Stable Markowitz Portfolios," CEPR Discussion Papers 6474, C.E.P.R. Discussion Papers.
    3. Cazalet, Zelia & Grison, Pierre & Roncalli, Thierry, 2013. "The Smart Beta Indexing Puzzle," MPRA Paper 48823, University Library of Munich, Germany.
    4. Phelim Boyle & Lorenzo Garlappi & Raman Uppal & Tan Wang, 2012. "Keynes Meets Markowitz: The Trade-Off Between Familiarity and Diversification," Management Science, INFORMS, vol. 58(2), pages 253-272, February.
    5. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    6. Howard D. Bondell & Brian J. Reich, 2008. "Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR," Biometrics, The International Biometric Society, vol. 64(1), pages 115-123, March.
    7. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    8. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    9. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    10. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Butler & Roy H. Kwon, 2021. "Data-driven integration of norm-penalized mean-variance portfolios," Papers 2112.07016, arXiv.org, revised Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    2. Margherita Giuzio & Sandra Paterlini, 2019. "Un-diversifying during crises: Is it a good idea?," Computational Management Science, Springer, vol. 16(3), pages 401-432, July.
    3. Philipp J. Kremer & Andreea Talmaciu & Sandra Paterlini, 2018. "Risk minimization in multi-factor portfolios: What is the best strategy?," Annals of Operations Research, Springer, vol. 266(1), pages 255-291, July.
    4. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    5. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    6. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    7. Mian Huang & Shangbing Yu & Weixin Yao, 2022. "Regularized Factor Portfolio for Cross-sectional Multifactor Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 427-449, August.
    8. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    9. Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
    10. Pun, Chi Seng & Wong, Hoi Ying, 2019. "A linear programming model for selection of sparse high-dimensional multiperiod portfolios," European Journal of Operational Research, Elsevier, vol. 273(2), pages 754-771.
    11. Wolfgang Karl Hardle & Yegor Klochkov & Alla Petukhina & Nikita Zhivotovskiy, 2022. "Robustifying Markowitz," Papers 2212.13996, arXiv.org.
    12. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    13. Margherita Giuzio & Kay Eichhorn-Schott & Sandra Paterlini & Vincent Weber, 2018. "Tracking hedge funds returns using sparse clones," Annals of Operations Research, Springer, vol. 266(1), pages 349-371, July.
    14. Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
    15. Oikonomou, Ioannis & Platanakis, Emmanouil & Sutcliffe, Charles, 2018. "Socially responsible investment portfolios: Does the optimization process matter?," The British Accounting Review, Elsevier, vol. 50(4), pages 379-401.
    16. Härdle, Wolfgang & Klochkov, Yegor & Petukhina, Alla & Zhivotovskiy, Nikita, 2021. "Robustifying Markowitz," IRTG 1792 Discussion Papers 2021-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    18. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    19. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    20. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.02435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.