IDEAS home Printed from https://ideas.repec.org/p/mod/recent/081.html
   My bibliography  Save this paper

Exact and heuristic approaches for the index tracking problem with UCITS constraints

Author

Listed:
  • Andrea Scozzari
  • Fabio Tardella
  • Sandra Paterlini
  • Thiemo Krink

Abstract

Index tracking aims at determining an optimal portfolio that replicates the performance of an index or benchmark by investing in a smaller number of constituents or assets. The tracking portfolio should be cheap to maintain and update, i.e., invest in a smaller number of constituents than the index, have low turnover and low transaction costs, and should avoid large positions in few assets, as required by the European Union Directive UCITS (Under-taking for Collective Investments in Transferable Securities) rules. The UCITS rules make the problem hard to be satisfactorily modeled and solved to optimality: no exact methods but only heuristics have been proposed so far. The aim of this paper is twofold. First, we present the first Mixed Integer Quadratic Programming (MIQP) formulation for the constrained index tracking problem with the UCITS rules compliance. This allows us to obtain exact solutions for small- and medium-size problems based on real-world datasets. Second, we compare these solutions with the ones provided by the state-of-art heuristic Differential Evolution and Combinatorial Search for Index Tracking (DECS-IT), obtaining information about the heuristic performance and its reliability for the solution of large-size problems that cannot be solved with the exact approach. Empirical results show that DECS-IT is indeed appropriate to tackle the index tracking problem in such cases. Furthermore, we propose a method that combines the good characteristics of the exact and of the heuristic approaches.

Suggested Citation

  • Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2012. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Center for Economic Research (RECent) 081, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
  • Handle: RePEc:mod:recent:081
    as

    Download full text from publisher

    File URL: http://155.185.68.2/Recentpaper/recent-wp81.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Miguel Lobo & Maryam Fazel & Stephen Boyd, 2007. "Portfolio optimization with linear and fixed transaction costs," Annals of Operations Research, Springer, vol. 152(1), pages 341-365, July.
    2. Gilli, Manfred & Maringer, Dietmar & Schumann, Enrico, 2011. "Numerical Methods and Optimization in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780123756626.
    3. Bj�rn Fastrich & Sandra Paterlini & Peter Winker, 2014. "Cardinality versus q -norm constraints for index tracking," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 2019-2032, November.
    4. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    5. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    6. Gunter Dueck & Peter Winker, 1992. "New concepts and algorithms for portfolio choice," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 8(3), pages 159-178, September.
    7. Diana Barro & Elio Canestrelli, 2009. "Tracking error: a multistage portfolio model," Annals of Operations Research, Springer, vol. 165(1), pages 47-66, January.
    8. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    9. Rubén Ruiz-Torrubiano & Alberto Suárez, 2009. "A hybrid optimization approach to index tracking," Annals of Operations Research, Springer, vol. 166(1), pages 57-71, February.
    10. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    11. Paterlini, Sandra & Krink, Thiemo, 2006. "Differential evolution and particle swarm optimisation in partitional clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1220-1247, March.
    12. Nesri-super-˙n Okay & Uğur Akman, 2003. "Index tracking with constraint aggregation," Applied Economics Letters, Taylor & Francis Journals, vol. 10(14), pages 913-916.
    13. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    14. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    15. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Cesarone & Raffaello Cesetti & Giuseppe Orlando & Manuel Luis Martino & Jacopo Maria Ricci, 2022. "Comparing SSD-Efficient Portfolios with a Skewed Reference Distribution," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    2. Andriosopoulos, Kostas & Doumpos, Michael & Papapostolou, Nikos C. & Pouliasis, Panos K., 2013. "Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 16-34.
    3. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    4. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Renato Bruni & Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2012. "A new stochastic dominance approach to enhanced index tracking problems," Economics Bulletin, AccessEcon, vol. 32(4), pages 3460-3470.
    6. Jasin Machkour & Daniel P. Palomar & Michael Muma, 2024. "FDR-Controlled Portfolio Optimization for Sparse Financial Index Tracking," Papers 2401.15139, arXiv.org, revised Jan 2024.
    7. Renato Bruni & Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2012. "A New Lp Model For Enhanced Indexation," Departmental Working Papers of Economics - University 'Roma Tre' 0168, Department of Economics - University Roma Tre.
    8. Sant’Anna, Leonardo R. & Filomena, Tiago P. & Caldeira, João F., 2017. "Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 146-157.
    9. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
    10. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    11. C. A. Valle & J. E. Beasley, 2019. "A nonlinear optimisation model for constructing minimal drawdown portfolios," Papers 1908.08684, arXiv.org.
    12. Renato Bruni & Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "No arbitrage and a linear portfolio selection model," Economics Bulletin, AccessEcon, vol. 33(2), pages 1247-1258.
    13. Frieder Meyer-Bullerdiek, 2022. "Selected Methods of optimized Sampling for Index Tracking – Evidence from German Stocks," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-8.
    14. Francesco Cesarone & Justo Puerto, 2024. "New approximate stochastic dominance approaches for Enhanced Indexation models," Papers 2401.12669, arXiv.org.
    15. Sant’Anna, Leonardo Riegel & Caldeira, João Frois & Filomena, Tiago Pascoal, 2020. "Lasso-based index tracking and statistical arbitrage long-short strategies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    16. Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
    17. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
    2. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    3. Meihua Wang & Chengxian Xu & Fengmin Xu & Hongang Xue, 2012. "A mixed 0–1 LP for index tracking problem with CVaR risk constraints," Annals of Operations Research, Springer, vol. 196(1), pages 591-609, July.
    4. Bj�rn Fastrich & Sandra Paterlini & Peter Winker, 2014. "Cardinality versus q -norm constraints for index tracking," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 2019-2032, November.
    5. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    6. Mahdi Moeini, 2022. "Solving the index tracking problem: a continuous optimization approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 807-835, June.
    7. Sant’Anna, Leonardo R. & Filomena, Tiago P. & Caldeira, João F., 2017. "Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 146-157.
    8. Miguel A. Lejeune & Gülay Samatlı-Paç, 2013. "Construction of Risk-Averse Enhanced Index Funds," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 701-719, November.
    9. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    10. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    11. Liang-chuan Wu & I-chan Tsai, 2014. "Three fuzzy goal programming models for index portfolios," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(8), pages 1155-1169, August.
    12. Emilio Ricardo Carvalhais & Antonio Marcos Duarte Júnior, 2015. "Indexation of Fixed-Income Portfolios to the IMA-B," Brazilian Business Review, Fucape Business School, vol. 12(3), pages 116-142, May.
    13. Billio, Monica & Caporin, Massimiliano & Costola, Michele, 2015. "Backward/forward optimal combination of performance measures for equity screening," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 63-83.
    14. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    15. Eduardo Acosta-Gonz�lez & Reinaldo Armas-Herrera & Fernando Fern�ndez-Rodr�guez, 2015. "On the index tracking and the statistical arbitrage choosing the stocks by means of cointegration: the role of stock picking," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1075-1091, June.
    16. Anubha Goel & Damir Filipovi'c & Puneet Pasricha, 2024. "Sparse Portfolio Selection via Topological Data Analysis based Clustering," Papers 2401.16920, arXiv.org.
    17. Chen, Wei, 2015. "Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 125-139.
    18. Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
    19. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    20. Yu Zheng & Bowei Chen & Timothy M. Hospedales & Yongxin Yang, 2019. "Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach," Papers 1911.05052, arXiv.org, revised Nov 2019.

    More about this item

    Keywords

    Index tracking; mixed integer quadratic programming; stochastic search heuristics; differential evolution; cardinality constraints;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:recent:081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/demodit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.