IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202329.html
   My bibliography  Save this paper

Forecasting International Financial Stress: The Role of Climate Risks

Author

Listed:
  • Santino Del Fava

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany)

  • Lavinia Rognone

    (University of Edinburgh Business School, 29 Buccleuch Place, Edinburgh, EH8 9JS, United Kingdom)

Abstract

We study the predictive value of climate risks for subsequent financial stress in a sample of daily data running from October 2006 to December 2022 of thirteen countries, which include China, ten European Union (EU) countries, the United Kingdom (UK), and the United States (US). The climate risk indicators are the result of a text-based approach which combines the term frequency-inverse document frequency and the cosine-similarity techniques. Given the persistence of financial stress as well as the importance of spillover effects of financial stress from other countries, we use random forests, a machine-learning technique tailored to handle many predictors, to estimate our forecasting models. Our findings show that climate risks tend to have a moderate impact, albeit in several cases statistically significant, on predictive accuracy, which tends to be stronger, in our cross-section of countries, on a daily than at a weekly or monthly forecast horizon of financial stress. Furthermore, the predictive value of climate risks for financial stress is heterogeneous across the countries in our sample, implying that a univariate forecasting model appears to be better suited than a corresponding multivariate one. Finally, the predictive value of climate risks for financial stress appears to be stronger in several countries at the lower conditional quantiles of financial stress.

Suggested Citation

  • Santino Del Fava & Rangan Gupta & Christian Pierdzioch & Lavinia Rognone, 2023. "Forecasting International Financial Stress: The Role of Climate Risks," Working Papers 202329, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202329
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Bruno Ćorić & Vladimir Šimić, 2021. "Economic disasters and aggregate investment," Empirical Economics, Springer, vol. 61(6), pages 3087-3124, December.
    2. Sheng, Xin & Kim, Won Joong & Gupta, Rangan & Ji, Qiang, 2023. "The impacts of oil price volatility on financial stress: Is the COVID-19 period different?," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 520-532.
    3. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    4. Robert F Engle & Stefano Giglio & Bryan Kelly & Heebum Lee & Johannes Stroebel, 2020. "Hedging Climate Change News," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1184-1216.
    5. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & Reneé van Eyden, 2023. "Climate risks and U.S. stock‐market tail risks: A forecasting experiment using over a century of data," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 228-244, June.
    8. Karmakar, Sayar & Gupta, Rangan & Cepni, Oguzhan & Rognone, Lavinia, 2023. "Climate risks and predictability of the trading volume of gold: Evidence from an INGARCH model," Resources Policy, Elsevier, vol. 82(C).
    9. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    10. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    11. Ströbel, Johannes & Wurgler, Jeffrey, 2021. "What do you think about climate finance?," CEPR Discussion Papers 16622, C.E.P.R. Discussion Papers.
    12. Gupta, Rangan & Pierdzioch, Christian, 2022. "Climate risks and forecastability of the realized volatility of gold and other metal prices," Resources Policy, Elsevier, vol. 77(C).
    13. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    14. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    15. Hyeongwoo Kim & Wen Shi, 2021. "Forecasting financial vulnerability in the USA: A factor model approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 439-457, April.
    16. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    17. Apostolakis, George & Papadopoulos, Athanasios P., 2014. "Financial stress spillovers in advanced economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 32(C), pages 128-149.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Bahloul, Walid & Balcilar, Mehmet & Cunado, Juncal & Gupta, Rangan, 2018. "The role of economic and financial uncertainties in predicting commodity futures returns and volatility: Evidence from a nonparametric causality-in-quantiles test," Journal of Multinational Financial Management, Elsevier, vol. 45(C), pages 52-71.
    20. Rietz, Thomas A., 1988. "The equity risk premium a solution," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 117-131, July.
    21. Flori, Andrea & Pammolli, Fabio & Spelta, Alessandro, 2021. "Commodity prices co-movements and financial stability: A multidimensional visibility nexus with climate conditions," Journal of Financial Stability, Elsevier, vol. 54(C).
    22. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    23. Faccini, Renato & Matin, Rastin & Skiadopoulos, George, 2023. "Dissecting climate risks: Are they reflected in stock prices?," Journal of Banking & Finance, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    2. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    3. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    4. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & Reneé van Eyden, 2023. "Climate risks and U.S. stock‐market tail risks: A forecasting experiment using over a century of data," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 228-244, June.
    5. Kejin Wu & Sayar Karmakar & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Stock Market Volatility Over a Century in an Emerging Market Economy: The Case of South Africa," Working Papers 202326, University of Pretoria, Department of Economics.
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    7. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2023. "Financial Stress and Realized Volatility: The Case of Agricultural Commodities," Working Papers 202320, University of Pretoria, Department of Economics.
    8. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    9. Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023. "El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.
    10. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    11. Karmakar, Sayar & Gupta, Rangan & Cepni, Oguzhan & Rognone, Lavinia, 2023. "Climate risks and predictability of the trading volume of gold: Evidence from an INGARCH model," Resources Policy, Elsevier, vol. 82(C).
    12. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    13. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    14. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    15. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    16. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    17. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
    18. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    19. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    20. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.

    More about this item

    Keywords

    Financial stress; Climate risks; Random forests; Forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.