IDEAS home Printed from https://ideas.repec.org/a/eee/poleco/v85y2024ics0176268024001046.html
   My bibliography  Save this article

Modeling the presidential approval ratings of the United States using machine-learning: Does climate policy uncertainty matter?

Author

Listed:
  • Bouri, Elie
  • Gupta, Rangan
  • Pierdzioch, Christian

Abstract

In the wake of a massive thrust on designing policies to tackle climate change, we study the role of climate policy uncertainty in impacting the presidential approval ratings of the United States (US). We control for other policy related uncertainties and geopolitical risks, over and above macroeconomic and financial predictors used in earlier literature on drivers of approval ratings of the US president. Because we study as many as 19 determinants, and nonlinearity is a well-established observation in this area of research, we utilize random forests, a machine-learning approach, to derive our results over the monthly period of 1987:04 to 2023:12. We find that, though the association of the presidential approval ratings with climate policy uncertainty is moderately negative and nonlinear, this type of uncertainty is in fact relatively more important than other measures of policy-related uncertainties, as well as many of the widely-used macroeconomic and financial indicators associated with presidential approval. More importantly, we also show that the importance of climate policy uncertainty for the approval ratings of the US president has grown in recent years.

Suggested Citation

  • Bouri, Elie & Gupta, Rangan & Pierdzioch, Christian, 2024. "Modeling the presidential approval ratings of the United States using machine-learning: Does climate policy uncertainty matter?," European Journal of Political Economy, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:poleco:v:85:y:2024:i:c:s0176268024001046
    DOI: 10.1016/j.ejpoleco.2024.102602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0176268024001046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejpoleco.2024.102602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Rangan Gupta & Patrick Kanda & Mark E. Wohar, 2021. "Predicting Stock Market Movements in the United States: The Role of Presidential Approval Ratings," International Review of Finance, International Review of Finance Ltd., vol. 21(1), pages 324-335, March.
    3. Rangan Gupta & Yuvana Jaichand & Christian Pierdzioch & Reneé van Eyden, 2023. "Realized Stock-Market Volatility of the United States and the Presidential Approval Rating," Mathematics, MDPI, vol. 11(13), pages 1-27, July.
    4. Sheng, Xin & Gupta, Rangan & Cepni, Oguzhan, 2022. "Persistence of state-level uncertainty of the United States: The role of climate risks," Economics Letters, Elsevier, vol. 215(C).
    5. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    6. Seung-Whan Choi & Patrick James & Yitan Li & Eric Olson, 2016. "Presidential approval and macroeconomic conditions: evidence from a nonlinear model," Applied Economics, Taylor & Francis Journals, vol. 48(47), pages 4558-4572, October.
    7. Jing Cynthia Wu & Fan Dora Xia, 2016. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
    8. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    9. Fernández-Macho, Javier, 2018. "Time-localized wavelet multiple regression and correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1226-1238.
    10. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    11. Chen, Zilin & Da, Zhi & Huang, Dashan & Wang, Liyao, 2023. "Presidential economic approval rating and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 147(1), pages 106-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rangan Gupta & Christian Pierdzioch & Aviral K. Tiwari, 2024. "Gasoline Prices and Presidential Approval Ratings of the United States," Working Papers 202427, University of Pretoria, Department of Economics.
    2. Ben Cheikh, Nidhaleddine & Ben Naceur, Sami & Kanaan, Oussama & Rault, Christophe, 2021. "Investigating the asymmetric impact of oil prices on GCC stock markets," Economic Modelling, Elsevier, vol. 102(C).
    3. Ha, Jongrim & Kim, Dohan & Kose, M. Ayhan & Prasad, Eswar S., 2025. "Resolving puzzles of monetary policy transmission in emerging markets," European Economic Review, Elsevier, vol. 173(C).
    4. Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024. "Forecasting international financial stress: The role of climate risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    5. Jesus Fernandez-Villaverde & Tomohide Mineyama & Dongho Song, 2024. "Are We Fragmented Yet? Measuring Geopolitical Fragmentation and Its Causal Effects," PIER Working Paper Archive 24-015, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Lin, Boqiang & Zhao, Hengsong, 2023. "Tracking policy uncertainty under climate change," Resources Policy, Elsevier, vol. 83(C).
    7. Istrefi, Klodiana & Odendahl, Florens & Sestieri, Giulia, 2023. "Fed communication on financial stability concerns and monetary policy decisions: Revelations from speeches," Journal of Banking & Finance, Elsevier, vol. 151(C).
    8. Foglia, Matteo & Plakandaras, Vasilios & Gupta, Rangan & Ji, Qiang, 2025. "Long-span multi-layer spillovers between moments of advanced equity markets: The role of climate risks," Research in International Business and Finance, Elsevier, vol. 74(C).
    9. Christina Christou & Ruthira Naraidoo & Rangan Gupta & Christis Hassapis, 2022. "Monetary policy reaction to uncertainty in Japan: Evidence from a quantile‐on‐quantile interest rate rule," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2041-2053, April.
    10. Li, Xiaodan & Gong, Xue & Xing, Lu, 2024. "The impact of presidential economic approval rating on stock volatility: An industrial perspective," Finance Research Letters, Elsevier, vol. 63(C).
    11. Costantini, Mauro & Sousa, Ricardo M., 2022. "What uncertainty does to euro area sovereign bond markets: Flight to safety and flight to quality," Journal of International Money and Finance, Elsevier, vol. 122(C).
    12. Gong, Xue & Xu, Weijun & Li, Xiaodan & Gong, Xue, 2024. "Presidential economic approval rating and global foreign exchange market volatility," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    13. Zhou, Dong-hai & Liu, Xiao-xing, 2024. "Does systemic risk in the fund markets predict future economic downturns?," International Review of Financial Analysis, Elsevier, vol. 92(C).
    14. Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    15. Gardner, Ben & Scotti, Chiara & Vega, Clara, 2022. "Words speak as loudly as actions: Central bank communication and the response of equity prices to macroeconomic announcements," Journal of Econometrics, Elsevier, vol. 231(2), pages 387-409.
    16. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    17. Hasan, Md. Bokhtiar & Hassan, M. Kabir & Alhomaidi, Asem, 2023. "How do sectoral Islamic equity markets react to geopolitical risk, economic policy uncertainty, and oil price shocks?," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    18. Chung, Min-Su & Lim, Hyunjoon, 2024. "Transmission of external shocks and regional heterogeneity: Evidence from Korean province-level data," Journal of Asian Economics, Elsevier, vol. 94(C).
    19. Nidhaleddine Ben Cheikh & Sami Ben Naceur & Oussama Kanaan & Christophe Rault, 2018. "Oil Prices and GCC Stock Markets: New Evidence from Smooth Transition Models," CESifo Working Paper Series 7072, CESifo.
    20. Md. Monirul Islam & Kazi Sohag & Faheem ur Rehman, 2022. "Do Geopolitical Tensions and Economic Policy Uncertainties Reorient Mineral Imports in the USA? A Fat-Tailed Data Analysis Using Novel Quantile Approaches," Mathematics, MDPI, vol. 11(1), pages 1-25, December.

    More about this item

    Keywords

    Presidential approval ratings; Climate policy uncertainty; Random forests;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:poleco:v:85:y:2024:i:c:s0176268024001046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505544 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.