IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/16150.html
   My bibliography  Save this paper

Financial Conditions Indexes: A Fresh Look after the Financial Crisis

Author

Listed:
  • Jan Hatzius
  • Peter Hooper
  • Frederic S. Mishkin
  • Kermit L. Schoenholtz
  • Mark W. Watson

Abstract

This paper explores the link between financial conditions and economic activity. We first review existing measures, including both single indicators and composite financial conditions indexes (FCIs). We then build a new FCI that features three key innovations. First, besides interest rates and asset prices, it includes a broad range of quantitative and survey-based indicators. Second, our use of unbalanced panel estimation techniques results in a longer time series (back to 1970) than available for other indexes. Third, we control for past GDP growth and inflation and thus focus on the predictive power of financial conditions for future economic activity. During most of the past two decades for which comparisons are possible, including the last five years, our FCI shows a tighter link with future economic activity than existing indexes, although some of this undoubtedly reflects the fact that we selected the variables partly based on our observation of the recent financial crisis. As of the end of 2009, our FCI showed financial conditions at somewhat worse-than-normal levels. The main reason is that various quantitative credit measures (especially issuance of asset backed securities) remained unusually weak for an economy that had resumed expanding. Thus, our analysis is consistent with an ongoing modest drag from financial conditions on economic growth in 2010.

Suggested Citation

  • Jan Hatzius & Peter Hooper & Frederic S. Mishkin & Kermit L. Schoenholtz & Mark W. Watson, 2010. "Financial Conditions Indexes: A Fresh Look after the Financial Crisis," NBER Working Papers 16150, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:16150
    Note: EFG ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w16150.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    2. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    3. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    4. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    5. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    6. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    7. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    8. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    9. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    10. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    11. Driver, Ciaran & Trapani, Lorenzo & Urga, Giovanni, 2013. "On the use of cross-sectional measures of forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 29(3), pages 367-377.
    12. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    13. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    14. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    15. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    16. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    17. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    18. Yi‐Chiuan Wang & Jyh‐Lin Wu, 2015. "Fundamentals and Exchange Rate Prediction Revisited," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(8), pages 1651-1671, December.
    19. Tine Janžek & Petra Ziherl, 2013. "Overview of models and methods for measuring economic agent’s expectations," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Proceedings of the Sixth IFC Conference on "Statistical issues and activities in a changing environment", Basel, 28-29 August 2012., volume 36, pages 172-179, Bank for International Settlements.
    20. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.

    More about this item

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:16150. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.