IDEAS home Printed from https://ideas.repec.org/p/lsg/lsgwps/wp167.html
   My bibliography  Save this paper

The expansion of modern agriculture and global biodiversity decline: an integrated assessment

Author

Listed:
  • Bruno Lanz
  • Simon Dietz
  • Tim Swanson

Abstract

Modern agriculture relies on a small number of highly productive crops and its continued expansion has led to a significant loss of biodiversity. In this paper we consider the macroeconomic consequences of this land conversion process from the perspective of agricultural productivity and food production. We employ a quantitative, structurally estimated model of the global economy in which economic growth, population and food demand, agricultural innovations, and land conversion are jointly determined. We show that even a small impact of global biodiversity on agricultural productivity calls for both a halt in agricultural land conversion and increased agricultural R&D.

Suggested Citation

  • Bruno Lanz & Simon Dietz & Tim Swanson, 2016. "The expansion of modern agriculture and global biodiversity decline: an integrated assessment," GRI Working Papers 167, Grantham Research Institute on Climate Change and the Environment.
  • Handle: RePEc:lsg:lsgwps:wp167
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2016/05/Working-Paper-167-Lanz-et-al-2016.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David U. Hooper & E. Carol Adair & Bradley J. Cardinale & Jarrett E. K. Byrnes & Bruce A. Hungate & Kristin L. Matulich & Andrew Gonzalez & J. Emmett Duffy & Lars Gamfeldt & Mary I. O’Connor, 2012. "A global synthesis reveals biodiversity loss as a major driver of ecosystem change," Nature, Nature, vol. 486(7401), pages 105-108, June.
    2. Gordon C. Rausser & Arthur A. Small, 2000. "Valuing Research Leads: Bioprospecting and the Conservation of Genetic Resources," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 173-206, February.
    3. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    4. Jones Charles I., 2001. "Was an Industrial Revolution Inevitable? Economic Growth Over the Very Long Run," The B.E. Journal of Macroeconomics, De Gruyter, vol. 1(2), pages 1-45, August.
    5. Guvenen, Fatih, 2006. "Reconciling conflicting evidence on the elasticity of intertemporal substitution: A macroeconomic perspective," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1451-1472, October.
    6. Wilde, Joshua, 2012. "How substitutable are fixed factors in production? evidence from pre-industrial England," MPRA Paper 39278, University Library of Munich, Germany.
    7. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    8. Bruno Lanz & Simon Dietz & Tim Swanson, 2016. "Economic growth and agricultural land conversion under uncertain productivity improvements in agriculture," GRI Working Papers 240, Grantham Research Institute on Climate Change and the Environment.
    9. Subramanian, Shankar & Deaton, Angus, 1996. "The Demand for Food and Calories," Journal of Political Economy, University of Chicago Press, vol. 104(1), pages 133-162, February.
    10. Angus Chu & Guido Cozzi & Chih-Hsing Liao, 2013. "Endogenous fertility and human capital in a Schumpeterian growth model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(1), pages 181-202, January.
    11. F. Stuart Chapin III & Erika S. Zavaleta & Valerie T. Eviner & Rosamond L. Naylor & Peter M. Vitousek & Heather L. Reynolds & David U. Hooper & Sandra Lavorel & Osvaldo E. Sala & Sarah E. Hobbie & Mic, 2000. "Consequences of changing biodiversity," Nature, Nature, vol. 405(6783), pages 234-242, May.
    12. Michael Chappell & Liliana LaValle, 2011. "Food security and biodiversity: can we have both? An agroecological analysis," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 28(1), pages 3-26, February.
    13. Brown, Gardner Jr. & Goldstein, Jon H., 1984. "A model for valuing endangered species," Journal of Environmental Economics and Management, Elsevier, vol. 11(4), pages 303-309, December.
    14. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(3), pages 973-1006, August.
    15. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    16. Laxminarayan, Ramanan & Brown, Gardner M., 2001. "Economics of Antibiotic Resistance: A Theory of Optimal Use," Journal of Environmental Economics and Management, Elsevier, vol. 42(2), pages 183-206, September.
    17. L. Rachel Ngai & Christopher A. Pissarides, 2007. "Structural Change in a Multisector Model of Growth," American Economic Review, American Economic Association, vol. 97(1), pages 429-443, March.
    18. Julian M. Alston & Philip G. Pardey, 2014. "Agriculture in the Global Economy," Journal of Economic Perspectives, American Economic Association, vol. 28(1), pages 121-146, Winter.
    19. Heal, Geoffrey & Walker, Brian & Levin, Simon & Arrow, Kenneth & Dasgupta, Partha & Daily, Gretchen & Ehrlich, Paul & Maler, Karl-Goran & Kautsky, Nils & Lubchenco, Jane, 2004. "Genetic diversity and interdependent crop choices in agriculture," Resource and Energy Economics, Elsevier, vol. 26(2), pages 175-184, June.
    20. Gary D. Hansen & Edward C. Prescott, 2002. "Malthus to Solow," American Economic Review, American Economic Association, vol. 92(4), pages 1205-1217, September.
    21. Amani Omer & Unai Pascual & Noel P. Russell, 2007. "Biodiversity Conservation and Productivity in Intensive Agricultural Systems," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(2), pages 308-329, June.
    22. Di Falco, Salvatore & Bezabih, Mintewab & Yesuf, Mahmud, 2010. "Seeds for livelihood: Crop biodiversity and food production in Ethiopia," Ecological Economics, Elsevier, vol. 69(8), pages 1695-1702, June.
    23. Simpson, R David & Sedjo, Roger A & Reid, John W, 1996. "Valuing Biodiversity for Use in Pharmaceutical Research," Journal of Political Economy, University of Chicago Press, vol. 104(1), pages 163-185, February.
    24. Lucas Bretschger, 2013. "Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.
    25. Douglas Gollin, 2002. "Getting Income Shares Right," Journal of Political Economy, University of Chicago Press, vol. 110(2), pages 458-474, April.
    26. Gardner Brown & Ramanan Laxminarayan, 1998. "Economics of Antibiotic Resistance," Discussion Papers in Economics at the University of Washington 0060, Department of Economics at the University of Washington.
    27. Martin L. Weitzman, 2000. "Economic Profitability Versus Ecological Entropy," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 237-263.
    28. Barro, Robert J & Becker, Gary S, 1989. "Fertility Choice in a Model of Economic Growth," Econometrica, Econometric Society, vol. 57(2), pages 481-501, March.
    29. Sherman Robinson & Hans Meijl & Dirk Willenbockel & Hugo Valin & Shinichiro Fujimori & Toshihiko Masui & Ron Sands & Marshall Wise & Katherine Calvin & Petr Havlik & Daniel Mason d'Croz & Andrzej Tabe, 2014. "Comparing supply-side specifications in models of global agriculture and the food system," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 21-35, January.
    30. Salvatore Di Falco, 2012. "On the Value of Agricultural Biodiversity," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 207-223, August.
    31. Echevarria, Cristina, 1997. "Changes in Sectoral Composition Associated with Economic Growth," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(2), pages 431-452, May.
    32. Timo Goeschl & Timothy Swanson, 2003. "Pests, Plagues, and Patents," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 561-575, 04/05.
    33. Dietrich Vollrath, 2011. "The agricultural basis of comparative development," Journal of Economic Growth, Springer, vol. 16(4), pages 343-370, December.
    34. World Bank, 2016. "World Development Indicators 2016," World Bank Publications - Books, The World Bank Group, number 23969, December.
    35. Quamrul H. Ashraf & Ashley Lester & David N. Weil, 2009. "When Does Improving Health Raise GDP?," NBER Chapters, in: NBER Macroeconomics Annual 2008, Volume 23, pages 157-204, National Bureau of Economic Research, Inc.
    36. Bruno Lanz & Simon Dietz & Tim Swanson, 2018. "Global Economic Growth and Agricultural Land Conversion under Uncertain Productivity Improvements in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 545-569.
    37. Timothy K.M. Beatty & Jeffrey T. LaFrance, 2005. "United States Demand for Food and Nutrition in the Twentieth Century," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(5), pages 1159-1166.
    38. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    39. Sharp, Paul & Strulik, Holger & Weisdorf, Jacob, 2012. "The determinants of income in a Malthusian equilibrium," Journal of Development Economics, Elsevier, vol. 97(1), pages 112-117.
    40. Alwyn Young, 1998. "Growth without Scale Effects," Journal of Political Economy, University of Chicago Press, vol. 106(1), pages 41-63, February.
    41. Kawagoe, Toshihiko & Otsuka, Keijiro & Hayami, Yujiro, 1986. "Induced Bias of Technical Change in Agriculture: The United States and Japan, 1880-1980," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 523-544, June.
    42. Poleman, Thomas T. & Thomas, Lillian T., 1995. "Income and dietary change : International comparisons using purchasing-power-parity conversions," Food Policy, Elsevier, vol. 20(2), pages 149-159, April.
    43. Christopher Laincz & Pietro Peretto, 2006. "Scale effects in endogenous growth theory: an error of aggregation not specification," Journal of Economic Growth, Springer, vol. 11(3), pages 263-288, September.
    44. Claudia Goldin & Lawrence F. Katz, 1998. "The Origins of Technology-Skill Complementarity," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 693-732.
    45. Logan, Trevon D., 2009. "The Transformation of Hunger: The Demand for Calories Past and Present," The Journal of Economic History, Cambridge University Press, vol. 69(2), pages 388-408, June.
    46. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    47. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    48. Joonkyung Ha & Peter Howitt, 2007. "Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(4), pages 733-774, June.
    49. Tilman, David & Polasky, Stephen & Lehman, Clarence, 2005. "Diversity, productivity and temporal stability in the economies of humans and nature," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 405-426, May.
    50. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    51. Koo, B. & Pardey, P. G. & Wright, B. D., 2003. "The economic costs of conserving genetic resources at the CGIAR centres," Agricultural Economics, Blackwell, vol. 29(3), pages 287-297, December.
    52. Holger Strulik & Jacob Weisdorf, 2008. "Population, food, and knowledge: a simple unified growth theory," Journal of Economic Growth, Springer, vol. 13(3), pages 195-216, September.
    53. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    54. Dinopoulos, Elias & Thompson, Peter, 1998. "Schumpeterian Growth without Scale Effects," Journal of Economic Growth, Springer, vol. 3(4), pages 313-335, December.
    55. Melinda Smale & Jason Hartell & Paul W. Heisey & Ben Senauer, 1998. "The Contribution of Genetic Resources and Diversity to Wheat Production in the Punjab of Pakistan," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 482-493.
    56. Martin, Will & Mitra, Devashish, 2001. "Productivity Growth and Convergence in Agriculture versus Manufacturing," Economic Development and Cultural Change, University of Chicago Press, vol. 49(2), pages 403-422, January.
    57. Paul M. Romer, 1994. "The Origins of Endogenous Growth," Journal of Economic Perspectives, American Economic Association, vol. 8(1), pages 3-22, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brausmann, Alexandra & Bretschger, Lucas, 2018. "Economic development on a finite planet with stochastic soil degradation," European Economic Review, Elsevier, vol. 108(C), pages 1-19.
    2. Bruno Lanz & Simon Dietz & Tim Swanson, 2018. "Global Economic Growth and Agricultural Land Conversion under Uncertain Productivity Improvements in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 545-569.
    3. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Beba, Patrycja, 2021. "Territorial differences in agricultural investments co-financed by the European Union in Poland," Land Use Policy, Elsevier, vol. 100(C).
    4. Melissa Anne Beryl Vogt, 2021. "Ecological sensitivity within human realities concept for improved functional biodiversity outcomes in agricultural systems and landscapes," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-19, December.
    5. Bruno Lanz & Simon Dietz & Tim Swanson, 2016. "Economic growth and agricultural land conversion under uncertain productivity improvements in agriculture," FOODSECURE Working papers 53, LEI Wageningen UR.
    6. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).
    7. Pedro Naso; Ozgun Haznedar; Bruno Lanz; Timothy Swanson, 2021. "Food Security in the Long-Run:A Macroeconomic Approach to Land Use Policy," CIES Research Paper series 71-2021, Centre for International Environmental Studies, The Graduate Institute.
    8. Dmitry A. Ruban & Natalia N. Yashalova, 2022. "Corporate Web Positioning as a Strategic Communication Tool in Agriculture," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
    9. Franziska Funke & Linus Mattauch & Inge van den Bijgaart & H. Charles J. Godfray & Cameron Hepburn & David Klenert & Marco Springmann & Nicolas Treich, 2022. "Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?," Review of Environmental Economics and Policy, University of Chicago Press, vol. 16(2), pages 219-240.
    10. Miranda, Javier & Börner, Jan, 2023. "Agricultural commodity prices, governance, and land supply in the Tropics," Discussion Papers 334202, University of Bonn, Center for Development Research (ZEF).
    11. C. Hall & J. I. Macdiarmid & R. B. Matthews & P. Smith & S. F. Hubbard & T. P. Dawson, 2019. "The relationship between forest cover and diet quality: a case study of rural southern Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(3), pages 635-650, June.
    12. Weituschat, Chiara Sophia & Pascucci, Stefano & Materia, Valentina Cristiana & Caracciolo, Francesco, 2023. "Can contract farming support sustainable intensification in agri-food value chains?," Ecological Economics, Elsevier, vol. 211(C).
    13. Naso, Pedro & Haznedar, Ozgun & Lanz, Bruno & Swanson, Tim, 2022. "A macroeconomic approach to global land use policy," Resource and Energy Economics, Elsevier, vol. 69(C).
    14. Simon Odawa & Yongwon Seo, 2019. "Water Tower Ecosystems under the Influence of Land Cover Change and Population Growth: Focus on Mau Water Tower in Kenya," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    15. Irene Bouwma & Seerp Wigboldus & Jorieke Potters & Trond Selnes & Sabine van Rooij & Judith Westerink, 2022. "Sustainability Transitions and the Contribution of Living Labs: A Framework to Assess Collective Capabilities and Contextual Performance," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    16. Dénis B. Akouwerabou, 2023. "Effect of agricultural extension on cotton farmer's efficiency in arid and semi‐arid areas of Burkina Faso," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 42-59, February.
    17. Zhaoxia Guo & Qinqin Guo & Yujie Cai & Ge Wang, 2021. "Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China," Land, MDPI, vol. 10(11), pages 1-26, November.
    18. Martin, Inès & Vranken, Liesbet & Ugás, Roberto, 2021. "Farmers’ Preferences to Cultivate Threatened Crop Varieties: Evidence from Peru," 2021 Conference, August 17-31, 2021, Virtual 315216, International Association of Agricultural Economists.
    19. Chengpeng Zhang & Yu Ye & Xiuqi Fang & Hansunbai Li & Xue Zheng, 2020. "Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    20. Funke, Franziska & Mattauch, Linus & van den Bijgaart, Inge & Godfray, Charles & Hepburn, Cameron & Klenert, David & Springmann, Marco & Treich, Nicholas, 2021. "Is Meat Too Cheap? Towards Optimal Meat Taxation," INET Oxford Working Papers 2021-08, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    21. Lai, Zhaohao & Chen, Meiqiu & Liu, Taoju, 2020. "Changes in and prospects for cultivated land use since the reform and opening up in China," Land Use Policy, Elsevier, vol. 97(C).
    22. Aliaa Dirani & Gumataw Kifle Abebe & Rachel A. Bahn & Giuliano Martiniello & Isam Bashour, 2021. "Exploring climate change adaptation practices and household food security in the Middle Eastern context: a case of small family farms in Central Bekaa, Lebanon," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(4), pages 1029-1047, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Lanz & Simon Dietz & Timothy Swanson, 2016. "Economic growth and agricultural land conversion under uncertain productivity improvements in agriculture," CIES Research Paper series 43-2016, Centre for International Environmental Studies, The Graduate Institute.
    2. Bruno Lanz & Simon Dietz & Tim Swanson, 2018. "Global Economic Growth and Agricultural Land Conversion under Uncertain Productivity Improvements in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 545-569.
    3. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(3), pages 973-1006, August.
    4. Simon Dietz & Bruno Lanz, 2019. "Growth and Adaptation to Climate Change in the Long Run," CESifo Working Paper Series 7986, CESifo.
    5. Dietz, Simon & Lanz, Bruno, 2022. "Growth and adaptation to climate change in the long run," LSE Research Online Documents on Economics 117606, London School of Economics and Political Science, LSE Library.
    6. Dietz, Simon & Lanz, Bruno, 2022. "Growth and adaptation to climate change in the long run," LSE Research Online Documents on Economics 117608, London School of Economics and Political Science, LSE Library.
    7. Angus Chu & Guido Cozzi & Chih-Hsing Liao, 2013. "Endogenous fertility and human capital in a Schumpeterian growth model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(1), pages 181-202, January.
    8. Chu, Angus C. & Furukawa, Yuichi & Wang, Xilin, 2022. "Rent-seeking government and endogenous takeoff in a Schumpeterian economy," Journal of Macroeconomics, Elsevier, vol. 72(C).
    9. Chu, Angus C. & Fan, Haichao & Wang, Xilin, 2020. "Status-seeking culture and development of capitalism," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 275-290.
    10. Pietro Peretto & Simone Valente, 2015. "Growth on a finite planet: resources, technology and population in the long run," Journal of Economic Growth, Springer, vol. 20(3), pages 305-331, September.
    11. Naso, Pedro & Lanz, Bruno & Swanson, Tim, 2020. "The return of Malthus? Resource constraints in an era of declining population growth," European Economic Review, Elsevier, vol. 128(C).
    12. Chu, Angus C. & Peretto, Pietro F. & Wang, Xilin, 2022. "Agricultural revolution and industrialization," Journal of Development Economics, Elsevier, vol. 158(C).
    13. Holger Strulik & Klaus Prettner & Alexia Prskawetz, 2013. "The past and future of knowledge-based growth," Journal of Economic Growth, Springer, vol. 18(4), pages 411-437, December.
    14. Prettner, Klaus & Werner, Katharina, 2016. "Why it pays off to pay us well: The impact of basic research on economic growth and welfare," Research Policy, Elsevier, vol. 45(5), pages 1075-1090.
    15. repec:got:cegedp:140 is not listed on IDEAS
    16. Chu, Angus C. & Peretto, Pietro F., 2023. "Innovation and inequality from stagnation to growth," European Economic Review, Elsevier, vol. 160(C).
    17. Baldanzi, Annarita & Bucci, Alberto & Prettner, Klaus, 2021. "Children’S Health, Human Capital Accumulation, And R&D-Based Economic Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 25(3), pages 651-668, April.
    18. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    19. Chu, Angus C. & Wang, Xilin, 2022. "Effects Of R&D Subsidies In A Hybrid Model Of Endogenous Growth And Semi-Endogenous Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 26(3), pages 813-832, April.
    20. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
    21. Lehmann-Hasemeyer, Sibylle H. & Prettner, Klaus & Tscheuschner, Paul, 2020. "The scientific revolution and its role in the transition to sustained economic growth," Hohenheim Discussion Papers in Business, Economics and Social Sciences 06-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.

    More about this item

    JEL classification:

    • N0 - Economic History - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lsg:lsgwps:wp167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The GRI Administration (email available below). General contact details of provider: https://edirc.repec.org/data/grlseuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.