IDEAS home Printed from https://ideas.repec.org/f/pla552.html
   My authors  Follow this author

Karl Larsson

Personal Details

First Name:Karl
Middle Name:
Last Name:Larsson
Suffix:
RePEc Short-ID:pla552
[This author has chosen not to make the email address public]

Affiliation

Nationalekonomiska Institutionen
Ekonomihögskolan
Lunds Universitet

Lund, Sweden
http://www.nek.lu.se/

: +46 +46 222 0000
+46 +46 2224613
P.O. Box 7082, S-222 07 LUND
RePEc:edi:delunse (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.

    Cited by:

    1. Amélie Charles & Olivier Darné, 2012. "Volatility Persistence in Crude Oil Markets," Working Papers hal-00719387, HAL.
    2. Rıza Demirer & Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2017. "Time-Varying Rare Disaster Risks, Oil Returns and Volatility," Working Papers 201762, University of Pretoria, Department of Economics.
    3. Maslyuk-Escobedo, Svetlana & Rotaru, Kristian & Dokumentov, Alexander, 2017. "News sentiment and jumps in energy spot and futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 186-210.
    4. Margaret Insley, 2013. "On the timing of non-renewable resource extraction with regime switching prices: an optimal stochastic control approach," Working Papers 1302, University of Waterloo, Department of Economics, revised Aug 2013.
    5. Aggarwal, Raj & Akhigbe, Aigbe & Mohanty, Sunil K., 2012. "Oil price shocks and transportation firm asset prices," Energy Economics, Elsevier, vol. 34(5), pages 1370-1379.
    6. Márcio Poletti Laurini & Roberto Baltieri Mauad & Fernando Antonio Lucena Aiube, 2016. "Multivariate Stochastic Volatility-Double Jump Model: an application for oil assets," Working Papers Series 415, Central Bank of Brazil, Research Department.
    7. Chan, Leo H. & Nguyen, Chi M. & Chan, Kam C., 2015. "A new approach to measure speculation in the oil futures market and some policy implications," Energy Policy, Elsevier, vol. 86(C), pages 133-141.
    8. Giovanni Bonaccolto & Massimiliano Caporin & Rangan Gupta, 2015. "The Dynamic Impact of Uncertainty in Causing and Forecasting the Distribution of Oil Returns and Risk," Working Papers 201564, University of Pretoria, Department of Economics.
    9. Lee, Eunhee & Han, Doo Bong & Ito, Shoichi & Rodolfo M. Nayga, Jr, 2015. "A common factor of stochastic volatilities between oil and commodity prices," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205771, Agricultural and Applied Economics Association.
    10. Julien Chevallier & Sofiane Aboura, 2013. "Leverage vs. Feedback: Which Effect Drives the Oil Market ?," Post-Print hal-01531283, HAL.
    11. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
    12. Insley, Margaret, 2017. "Resource extraction with a carbon tax and regime switching prices: Exercising your options," Energy Economics, Elsevier, vol. 67(C), pages 1-16.
    13. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    14. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    15. Gaye GENCER & Sercan DEMIRALAY, 2013. "The impact of oil prices on sectoral returns: an empirical analysis from Borsa Istanbul," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(12(589)), pages 7-24, December.
    16. Jian Chai & Shubin Wang & Shouyang Wang & Ju’e Guo, 2012. "Demand Forecast of Petroleum Product Consumption in the Chinese Transportation Industry," Energies, MDPI, Open Access Journal, vol. 5(3), pages 1-22, March.
    17. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    18. Joshua C.C. Chan & Angelia L. Grant, 2015. "Modeling energy price dynamics: GARCH versus stochastic volatility," CAMA Working Papers 2015-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    19. Christopher F Baum & Paola Zerilli, 2014. "Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility," Boston College Working Papers in Economics 860, Boston College Department of Economics.
    20. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    21. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    22. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    23. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    24. Da Fonseca, José & Ignatieva, Katja & Ziveyi, Jonathan, 2016. "Explaining credit default swap spreads by means of realized jumps and volatilities in the energy market," Energy Economics, Elsevier, vol. 56(C), pages 215-228.
    25. Kim, Jungmu & Park, Yuen Jung & Ryu, Doojin, 2017. "Stochastic volatility of the futures prices of emission allowances: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 714-724.
    26. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    27. Lee, Eunhee & Han, Doo Bong, 2016. "Oil Price Volatility and Asymmetric Leverage Effects," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235480, Agricultural and Applied Economics Association.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Karl Larsson should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.