IDEAS home Printed from https://ideas.repec.org/p/bcb/wpaper/415.html
   My bibliography  Save this paper

Multivariate Stochastic Volatility-Double Jump Model: an application for oil assets

Author

Listed:
  • Márcio Poletti Laurini
  • Roberto Baltieri Mauad
  • Fernando Antonio Lucena Aiube

Abstract

We propose a new multivariate model to capture the presence of jumps in mean and conditional variance in the returns of oil prices and companies in this sector. The model is based on the presence of common factors associated with jumps in mean and variance, as it performs a decomposition of the conditional variance of each asset as the sum of the common factor plus a specific transitory factor in a multivariate stochastic volatility structure. The estimation is made through Bayesian methods using Markov Chain Monte Carlo. The model allows recovering the changes in prices and volatility patterns observed in this sector, relating the jumps with the events observed in the period 2000-2015. We apply the model to estimate risk management measures, hedging and portfolio allocation and performing a comparison with other multivariate models of conditional volatility. Based on the results, we may conclude that the proposed model has a better performance when used to calculate portfolio VaR, since it does not reject the hypothesis of correct nominal coverage with certain specifications presented in this work. Furthermore, we conclude that the model can be used to hedge oil price risks, through the optimal hedge ratio for a portfolio containing an oil company asset (stock) and the oil price contract. When compared to the standard methodology based on GARCH models, our model performs well in this application.

Suggested Citation

  • Márcio Poletti Laurini & Roberto Baltieri Mauad & Fernando Antonio Lucena Aiube, 2016. "Multivariate Stochastic Volatility-Double Jump Model: an application for oil assets," Working Papers Series 415, Central Bank of Brazil, Research Department.
  • Handle: RePEc:bcb:wpaper:415
    as

    Download full text from publisher

    File URL: https://www.bcb.gov.br/content/publicacoes/WorkingPaperSeries/wps415.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    4. Christiane Baumeister & Gert Peersman, 2013. "The Role Of Time‐Varying Price Elasticities In Accounting For Volatility Changes In The Crude Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1087-1109, November.
    5. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    6. Gronwald, Marc, 2012. "A characterization of oil price behavior — Evidence from jump models," Energy Economics, Elsevier, vol. 34(5), pages 1310-1317.
    7. Cifarelli, Giulio & Paladino, Giovanna, 2010. "Oil price dynamics and speculation: A multivariate financial approach," Energy Economics, Elsevier, vol. 32(2), pages 363-372, March.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    10. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015. "What Drives Oil Prices? Emerging Versus Developed Economies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
    11. Morana, Claudio, 2013. "Oil price dynamics, macro-finance interactions and the role of financial speculation," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 206-226.
    12. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    13. Elyasiani, Elyas & Mansur, Iqbal & Odusami, Babatunde, 2011. "Oil price shocks and industry stock returns," Energy Economics, Elsevier, vol. 33(5), pages 966-974, September.
    14. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2011. "New evidence on oil price and firm returns," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3253-3262.
    15. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    16. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    17. Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
    18. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    19. Yu-Pin Hu & Ruey S. Tsay, 2014. "Principal Volatility Component Analysis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 153-164, April.
    20. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    21. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    22. Andreas Kaeck & Carol Alexander, 2013. "Stochastic Volatility Jump†Diffusions for European Equity Index Dynamics," European Financial Management, European Financial Management Association, vol. 19(3), pages 470-496, June.
    23. Baum, Christopher F. & Zerilli, Paola, 2016. "Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility," Energy Economics, Elsevier, vol. 53(C), pages 175-181.
    24. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    25. Lee, Yen-Hsien & Hu, Hsu-Ning & Chiou, Jer-Shiou, 2010. "Jump dynamics with structural breaks for crude oil prices," Energy Economics, Elsevier, vol. 32(2), pages 343-350, March.
    26. Salisu, Afees A. & Oloko, Tirimisiyu F., 2015. "Modeling oil price–US stock nexus: A VARMA–BEKK–AGARCH approach," Energy Economics, Elsevier, vol. 50(C), pages 1-12.
    27. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    28. Laurini, Márcio Poletti & Mauad, Roberto Baltieri, 2015. "A common jump factor stochastic volatility model," Finance Research Letters, Elsevier, vol. 12(C), pages 2-10.
    29. repec:qut:auncer:2013_03 is not listed on IDEAS
    30. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    31. Kaufmann, Robert K., 2011. "The role of market fundamentals and speculation in recent price changes for crude oil," Energy Policy, Elsevier, vol. 39(1), pages 105-115, January.
    32. Hossein Asgharian & Christoffer Bengtsson, 2006. "Jump Spillover in International Equity Markets," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 167-203.
    33. Zhongjun Qu & Pierre Perron, 2013. "A stochastic volatility model with random level shifts and its applications to S&P 500 and NASDAQ return indices," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 309-339, October.
    34. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    35. Wai Mun Fong & Kim Hock See, 2001. "Modelling the conditional volatility of commodity index futures as a regime switching process," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(2), pages 133-163.
    36. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    37. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    38. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.
    39. Carol Alexander, 2002. "Principal Component Models for Generating Large GARCH Covariance Matrices," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 337-359, July.
    40. Ali Ahmed, Huson Joher & Bashar, Omar H.M.N. & Wadud, I.K.M. Mokhtarul, 2012. "The transitory and permanent volatility of oil prices: What implications are there for the US industrial production?," Applied Energy, Elsevier, vol. 92(C), pages 447-455.
    41. Adam Clements & Yin Liao, 2013. "The dynamics of co-jumps, volatility and correlation," NCER Working Paper Series 91, National Centre for Econometric Research.
    42. Askari, Hossein & Krichene, Noureddine, 2008. "Oil price dynamics (2002-2006)," Energy Economics, Elsevier, vol. 30(5), pages 2134-2153, September.
    43. Dias, José G. & Ramos, Sofia B., 2014. "Energy price dynamics in the U.S. market. Insights from a heterogeneous multi-regime framework," Energy, Elsevier, vol. 68(C), pages 327-336.
    44. Ozdemir, Zeynel Abidin & Gokmenoglu, Korhan & Ekinci, Cagdas, 2013. "Persistence in crude oil spot and futures prices," Energy, Elsevier, vol. 59(C), pages 29-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodolfo C. Moura & Márcio P. Laurini, 2021. "Spillovers and jumps in global markets: A comparative analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5997-6013, October.
    2. Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
    3. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    4. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    5. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurini, Márcio Poletti & Mauad, Roberto Baltieri & Aiube, Fernando Antônio Lucena, 2020. "The impact of co-jumps in the oil sector," Research in International Business and Finance, Elsevier, vol. 52(C).
    2. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    3. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Zhenhua Liu & Zhihua Ding & Tao Lv & Jy S. Wu & Wei Qiang, 2019. "Financial factors affecting oil price change and oil-stock interactions: a review and future perspectives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 207-225, January.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    11. Baum, Christopher F. & Zerilli, Paola & Chen, Liyuan, 2021. "Stochastic volatility, jumps and leverage in energy and stock markets: Evidence from high frequency data," Energy Economics, Elsevier, vol. 93(C).
    12. Zaichao Du & Pei Pei, 2020. "Backtesting portfolio value‐at‐risk with estimated portfolio weights," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 605-619, September.
    13. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    15. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    16. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    17. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    18. Liu, Li & Wang, Yudong & Wu, Chongfeng & Wu, Wenfeng, 2016. "Disentangling the determinants of real oil prices," Energy Economics, Elsevier, vol. 56(C), pages 363-373.
    19. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcb:wpaper:415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Barbone Gonzalez (email available below). General contact details of provider: https://www.bcb.gov.br/en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.