IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v32y2014i2p153-164.html
   My bibliography  Save this article

Principal Volatility Component Analysis

Author

Listed:
  • Yu-Pin Hu
  • Ruey S. Tsay

Abstract

Many empirical time series such as asset returns and traffic data exhibit the characteristic of time-varying conditional covariances, known as volatility or conditional heteroscedasticity. Modeling multivariate volatility, however, encounters several difficulties, including the curse of dimensionality. Dimension reduction can be useful and is often necessary. The goal of this article is to extend the idea of principal component analysis to principal volatility component (PVC) analysis. We define a cumulative generalized kurtosis matrix to summarize the volatility dependence of multivariate time series. Spectral analysis of this generalized kurtosis matrix is used to define PVCs. We consider a sample estimate of the generalized kurtosis matrix and propose test statistics for detecting linear combinations that do not have conditional heteroscedasticity. For application, we applied the proposed analysis to weekly log returns of seven exchange rates against U.S. dollar from 2000 to 2011 and found a linear combination among the exchange rates that has no conditional heteroscedasticity.

Suggested Citation

  • Yu-Pin Hu & Ruey S. Tsay, 2014. "Principal Volatility Component Analysis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 153-164, April.
  • Handle: RePEc:taf:jnlbes:v:32:y:2014:i:2:p:153-164
    DOI: 10.1080/07350015.2013.818006
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2013.818006
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    2. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    3. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    4. Engle, Robert F & Susmel, Raul, 1993. "Common Volatility in International Equity Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 167-176, April.
    5. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jecnmx:v:7:y:2019:i:2:p:19-:d:229754 is not listed on IDEAS
    2. Marc Hallin & Luis K. Hotta & João H. G Mazzeu & Carlos Cesar Trucios-Maza & Pedro L. Valls Pereira & Mauricio Zevallos, 2019. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: a General Dynamic Factor Approach," Working Papers ECARES 2019-14, ULB -- Universite Libre de Bruxelles.
    3. McAleer, M.J., 2014. "Discussion of “Principal Volatility Component Analysis” by Yu-Pin Hu and Ruey Tsay," Econometric Institute Research Papers EI 2014-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Márcio Poletti Laurini & Roberto Baltieri Mauad & Fernando Antonio Lucena Aiube, 2016. "Multivariate Stochastic Volatility-Double Jump Model: an application for oil assets," Working Papers Series 415, Central Bank of Brazil, Research Department.
    5. Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019. "On the robustness of the principal volatility components," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
    6. repec:wsi:ijitdm:v:16:y:2017:i:01:n:s0219622016300020 is not listed on IDEAS
    7. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
    8. Matilainen, Markus & Nordhausen, Klaus & Oja, Hannu, 2015. "New independent component analysis tools for time series," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 80-87.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:32:y:2014:i:2:p:153-164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UBES20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.