IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.09866.html
   My bibliography  Save this paper

New HSIC-based tests for independence between two stationary multivariate time series

Author

Listed:
  • Guochang Wang
  • Wai Keung Li
  • Ke Zhu

Abstract

This paper proposes some novel one-sided omnibus tests for independence between two multivariate stationary time series. These new tests apply the Hilbert-Schmidt independence criterion (HSIC) to test the independence between the innovations of both time series. Under regular conditions, the limiting null distributions of our HSIC-based tests are established. Next, our HSIC-based tests are shown to be consistent. Moreover, a residual bootstrap method is used to obtain the critical values for our HSIC-based tests, and its validity is justified. Compared with the existing cross-correlation-based tests for linear dependence, our tests examine the general (including both linear and non-linear) dependence to give investigators more complete information on the causal relationship between two multivariate time series. The merits of our tests are illustrated by some simulation results and a real example.

Suggested Citation

  • Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
  • Handle: RePEc:arx:papers:1804.09866
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.09866
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cheung, Yin-Wong & Ng, Lilian K., 1996. "A causality-in-variance test and its application to financial market prices," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 33-48.
    2. Choudhry, Taufiq & Papadimitriou, Fotios I. & Shabi, Sarosh, 2016. "Stock market volatility and business cycle: Evidence from linear and nonlinear causality tests," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 89-101.
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    5. Dinh Tuan Pham & Roch Roy & Lyne Cédras, 2003. "Tests for non-correlation of two cointegrated ARMA time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(5), pages 553-577, September.
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    8. Escanciano, J. Carlos, 2006. "Goodness-of-Fit Tests for Linear and Nonlinear Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 531-541, June.
    9. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    10. Marc Hallin & Abdessamad Saidi, 2007. "Optimal tests for non-correlation between multivariate time series," ULB Institutional Repository 2013/13406, ULB -- Universite Libre de Bruxelles.
    11. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    12. Marc Hallin & Abdessamad Saidi, 2005. "Testing Non-Correlation and Non-Causality between Multivariate ARMA Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 83-105, January.
    13. repec:wly:japmet:v:31:y:2016:i:7:p:1333-1351 is not listed on IDEAS
    14. Shao, Xiaofeng, 2009. "A Generalized Portmanteau Test For Independence Between Two Stationary Time Series," Econometric Theory, Cambridge University Press, vol. 25(01), pages 195-210, February.
    15. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, May.
    16. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2013. "Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries," Journal of Comparative Economics, Elsevier, vol. 41(4), pages 1220-1239.
    17. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
    18. Hong, Yongmiao, 2001. "A test for volatility spillover with application to exchange rates," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 183-224, July.
    19. Hiemstra, Craig & Jones, Jonathan D, 1994. " Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    20. Marc Hallin & Abdessamad Saidi, 2005. "Testing non-correlation and non-causality between two multivariate ARMA time series," ULB Institutional Repository 2013/2129, ULB -- Universite Libre de Bruxelles.
    21. Michael W. Robbins & Thomas J. Fisher, 2015. "Cross-Correlation Matrices for Tests of Independence and Causality Between Two Multivariate Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 459-473, October.
    22. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    23. Cees Diks & Marcin Wolski, 2016. "Nonlinear Granger Causality: Guidelines for Multivariate Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1333-1351, November.
    24. Chafik Bouhaddioui & Roch Roy, 2006. "A Generalized Portmanteau Test For Independence Of Two Infinite-Order Vector Autoregressive Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 505-544, July.
    25. Yongmiao Hong, 2001. "Testing for Independence between Two stationary Time Series via the Empirical Characteristic Function," Annals of Economics and Finance, Society for AEF, vol. 2(1), pages 123-164, May.
    26. Zhou Zhou, 2012. "Measuring nonlinear dependence in time‐series, a distance correlation approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 438-457, May.
    27. A. Sen & B. Sen, 2014. "Testing independence and goodness-of-fit in linear models," Biometrika, Biometrika Trust, vol. 101(4), pages 927-942.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.09866. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.