IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v89y2023ics1057521923002314.html
   My bibliography  Save this article

Risk transmission from the energy markets to the carbon market: Evidence from the recursive window approach

Author

Listed:
  • Vellachami, Sanggetha
  • Hasanov, Akram Shavkatovich
  • Brooks, Robert

Abstract

The carbon market is an emerging trading system in the financial services sector, with its global market value increasing from $150 billion in 2010 to $851 billion in 2021. In this study, we examined the volatility transmission from the energy markets (i.e., crude oil, coal, natural gas, and biofuel) to the carbon market in Europe. Our sample period ranged from March 25, 2008, to July 17, 2020, and covered phases of different market conditions. We employed an asymmetric and unrestricted version of the bivariate GARCH-in-mean model, assuming flexible distributions within the recursive window framework. Our empirical findings indicate that (1) carbon market returns are negatively and significantly influenced by crude oil and coal market uncertainties, (2) carbon market volatility is significantly affected by crude oil and coal market volatilities, and (3) the biofuel market does not have a significant relationship with the carbon market, probably because the biofuel market is still young and immature. The results of our study could aid carbon market participants in better understanding the information and risk spillover mechanisms from the energy market to the carbon market and provide them with a basis to formulate policies and make decisions on risk management and portfolio optimization.

Suggested Citation

  • Vellachami, Sanggetha & Hasanov, Akram Shavkatovich & Brooks, Robert, 2023. "Risk transmission from the energy markets to the carbon market: Evidence from the recursive window approach," International Review of Financial Analysis, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002314
    DOI: 10.1016/j.irfa.2023.102715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521923002314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2023.102715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian M. Hafner & Helmut Herwartz, 2008. "Testing for Causality in Variance Usinf Multivariate GARCH Models," Annals of Economics and Statistics, GENES, issue 89, pages 215-241.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2014. "Housing and the Great Depression," Applied Economics, Taylor & Francis Journals, vol. 46(24), pages 2966-2981, August.
    4. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    5. Rossi, E. & Spazzini, F., 2010. "Model and distribution uncertainty in multivariate GARCH estimation: A Monte Carlo analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2786-2800, November.
    6. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    7. Kevin B. Grier & Ólan T. Henry & Nilss Olekalns & Kalvinder Shields, 2004. "The asymmetric effects of uncertainty on inflation and output growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 551-565.
    8. repec:dau:papers:123456789/4237 is not listed on IDEAS
    9. Bao-jun Tang & Pi-qin Gong & Cheng Shen, 2017. "Factors of carbon price volatility in a comparative analysis of the EUA and sCER," Annals of Operations Research, Springer, vol. 255(1), pages 157-168, August.
    10. Tanin, Tauhidul Islam & Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf Mohsen & Brooks, Robert, 2022. "Risk transmission from the oil market to Islamic and conventional banks in oil-exporting and oil-importing countries," Energy Economics, Elsevier, vol. 115(C).
    11. Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong & Sousa, Ricardo M., 2015. "An empirical analysis of energy cost pass-through to CO2 emission prices," Energy Economics, Elsevier, vol. 49(C), pages 149-156.
    12. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    13. repec:dau:papers:123456789/6790 is not listed on IDEAS
    14. Gardebroek, Cornelis & Hernandez, Manuel A., 2013. "Do energy prices stimulate food price volatility? Examining volatility transmission between US oil, ethanol and corn markets," Energy Economics, Elsevier, vol. 40(C), pages 119-129.
    15. B. Ekwurzel & J. Boneham & M. W. Dalton & R. Heede & R. J. Mera & M. R. Allen & P. C. Frumhoff, 2017. "The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers," Climatic Change, Springer, vol. 144(4), pages 579-590, October.
    16. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
    17. Koen Pauwels & Dominique M. Hanssens, 2007. "Performance Regimes and Marketing Policy Shifts," Marketing Science, INFORMS, vol. 26(3), pages 293-311, 05-06.
    18. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    19. Zhu, Bangzhu & Huang, Liqing & Yuan, Lili & Ye, Shunxin & Wang, Ping, 2020. "Exploring the risk spillover effects between carbon market and electricity market: A bidimensional empirical mode decomposition based conditional value at risk approach," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 163-175.
    20. Feria-Domínguez, José Manuel & Rodriguez-Carrillero, David & Guerra-Martinez, José Carlos, 2018. "Measuring the risk-adjusted performance of CO2 emission markets: Evidence from SENDECO2," Utilities Policy, Elsevier, vol. 50(C), pages 124-132.
    21. Boris Blagov, 2019. "Exchange rate uncertainty and import prices in the euro area," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1537-1572, November.
    22. Robert C Ready, 2018. "Oil Prices and the Stock Market [The vix, the variance premium and stock market volatility]," Review of Finance, European Finance Association, vol. 22(1), pages 155-176.
    23. Conrad, Christian & Rittler, Daniel & Rotfuß, Waldemar, 2012. "Modeling and explaining the dynamics of European Union Allowance prices at high-frequency," Energy Economics, Elsevier, vol. 34(1), pages 316-326.
    24. Caporale, Guglielmo Maria & Spagnolo, Fabio & Spagnolo, Nicola, 2016. "Macro news and stock returns in the Euro area: A VAR-GARCH-in-mean analysis," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 180-188.
    25. Julien Chevallier, 2012. "Time-varying correlations in oil, gas and CO 2 prices: an application using BEKK, CCC and DCC-MGARCH models," Applied Economics, Taylor & Francis Journals, vol. 44(32), pages 4257-4274, November.
    26. Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
    27. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    28. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    30. Serletis, Apostolos & Xu, Libo, 2019. "The ethanol mandate and crude oil and biofuel agricultural commodity price dynamics," Journal of Commodity Markets, Elsevier, vol. 15(C), pages 1-1.
    31. Yu, Lean & Zha, Rui & Stafylas, Dimitrios & He, Kaijian & Liu, Jia, 2020. "Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    32. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    33. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    34. Fabienne Comte & Offer Lieberman, 2000. "Second‐Order Noncausality in Multivariate GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(5), pages 535-557, September.
    35. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sousa, Ricardo M., 2014. "What explain the short-term dynamics of the prices of CO2 emissions?," Energy Economics, Elsevier, vol. 46(C), pages 122-135.
    36. Christine Sauer & Alok K. Bohara, 2001. "Exchange Rate Volatility and Exports: Regional Differences between Developing and Industrialized Countries," Review of International Economics, Wiley Blackwell, vol. 9(1), pages 133-152, February.
    37. Bauwens, Luc & Laurent, Sebastien, 2005. "A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
    38. Kim, Hyun Seok & Koo, Won W., 2010. "Factors affecting the carbon allowance market in the US," Energy Policy, Elsevier, vol. 38(4), pages 1879-1884, April.
    39. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    40. Rita Sousa & Luís Aguiar-Conraria & Maria Joana Soares, 2014. "Carbon Financial Markets: a time-frequency analysis of CO2 price drivers," NIPE Working Papers 03/2014, NIPE - Universidade do Minho.
    41. Jules Sadefo-Kamdem & Ange Nsouadi & Michel Terraza, 2016. "Time-Frequency Analysis of the Relationship Between EUA and CER Carbon Markets," Post-Print hal-02901719, HAL.
    42. Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Hedström, Axel, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Energy Economics, Elsevier, vol. 71(C), pages 35-46.
    43. Ülkü Gürler & Deniz Yenigün & Mine Çağlar & Emre Berk, 2016. "On the Modeling of CO2 EUA and CER Prices of EU‐ETS for the 2008–2012 Period," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(4), pages 375-395, July.
    44. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    45. Ching-Chun Wei & Ya-Ling Lin, 2016. "Carbon Future Price Return, Oil Future Price Return and Stock Index Future Price Return in the U.S," International Journal of Energy Economics and Policy, Econjournals, vol. 6(4), pages 655-662.
    46. Ching-Chun Wei & Shu-Min Chen, 2016. "Examining the Relationship of Crude Oil Future Price Return and Agricultural Future Price Return in US," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 58-64.
    47. Julien Chevallier, 2010. "A Note on Cointegrating and Vector Autoregressive Relationships between CO2 allowances spot and futures prices," Economics Bulletin, AccessEcon, vol. 30(2), pages 1564-1584.
    48. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    49. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    50. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    51. Sauer, Christine & Bohara, Alok K, 2001. "Exchange Rate Volatility and Exports: Regional Differences between Developing and Industrialized Countries," Review of International Economics, Wiley Blackwell, vol. 9(1), pages 133-152, February.
    52. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    53. Rabeh KHALFAOUI & M. Boutahar & H. Boubaker, 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Post-Print hal-03797593, HAL.
    54. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    55. Hafner, Christian M. & Herwartz, Helmut, 2006. "A Lagrange multiplier test for causality in variance," Economics Letters, Elsevier, vol. 93(1), pages 137-141, October.
    56. Boubaker, Heni & Raza, Syed Ali, 2017. "A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets," Energy Economics, Elsevier, vol. 64(C), pages 105-117.
    57. An, Sufang & Gao, Xiangyun & An, Haizhong & An, Feng & Sun, Qingru & Liu, Siyao, 2020. "Windowed volatility spillover effects among crude oil prices," Energy, Elsevier, vol. 200(C).
    58. Andrea Chiarini, 2014. "Strategies for Developing an Environmentally Sustainable Supply Chain: Differences Between Manufacturing and Service Sectors," Business Strategy and the Environment, Wiley Blackwell, vol. 23(7), pages 493-504, November.
    59. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    60. Yin-Wong Cheung & Hung-Gay Fung, 1997. "Information Flows Between Eurodollar Spot and Futures Markets," Multinational Finance Journal, Multinational Finance Journal, vol. 1(4), pages 255-271, December.
    61. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Noman, Ambreen, 2021. "The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: The role of the U.S. economic policy uncertainty," Resources Policy, Elsevier, vol. 74(C).
    2. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    3. Tanin, Tauhidul Islam & Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf Mohsen & Brooks, Robert, 2022. "Risk transmission from the oil market to Islamic and conventional banks in oil-exporting and oil-importing countries," Energy Economics, Elsevier, vol. 115(C).
    4. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    5. Zhou, Yuqin & Wu, Shan & Zhang, Zeyi, 2022. "Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network," Energy Economics, Elsevier, vol. 114(C).
    6. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    7. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    8. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    9. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    10. Yeonjeong Lee & Seong-Min Yoon, 2020. "Dynamic Spillover and Hedging among Carbon, Biofuel and Oil," Energies, MDPI, vol. 13(17), pages 1-19, August.
    11. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).
    12. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    13. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    14. Yang Liu & Xueqing Yang & Mei Wang, 2021. "Global Transmission of Returns among Financial, Traditional Energy, Renewable Energy and Carbon Markets: New Evidence," Energies, MDPI, vol. 14(21), pages 1-32, November.
    15. Ahonen, Elena & Corbet, Shaen & Goodell, John W. & Günay, Samet & Larkin, Charles, 2022. "Are carbon futures prices stable? New evidence during negative oil," Finance Research Letters, Elsevier, vol. 47(PB).
    16. Wen, Fenghua & Zhao, Haocen & Zhao, Lili & Yin, Hua, 2022. "What drive carbon price dynamics in China?," International Review of Financial Analysis, Elsevier, vol. 79(C).
    17. Tian, Tingting & Lai, Kee-hung & Wong, Christina W.Y., 2022. "Connectedness mechanisms in the “Carbon-Commodity-Finance” system: Investment and management policy implications for emerging economies," Energy Policy, Elsevier, vol. 169(C).
    18. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    19. Tsuji, Chikashi, 2020. "Correlation and spillover effects between the US and international banking sectors: New evidence and implications for risk management," International Review of Financial Analysis, Elsevier, vol. 70(C).
    20. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.

    More about this item

    Keywords

    Fossil energy markets; Biofuel market; Carbon market; Volatility transmission; Skewed Student's t; Asymmetric BEKK; Recursive window;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.