IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v34y2012i1p316-326.html
   My bibliography  Save this article

Modeling and explaining the dynamics of European Union Allowance prices at high-frequency

Author

Listed:
  • Conrad, Christian
  • Rittler, Daniel
  • Rotfuß, Waldemar

Abstract

In this paper we model the adjustment process of European Union Allowance (EUA) prices to the releases of announcements at high-frequency controlling for intraday periodicity, volatility clustering and volatility persistence. We find that the high-frequency EUA price dynamics are very well captured by a fractionally integrated asymmetric power GARCH process. The decisions of the European Commission on second National Allocation Plans have a strong and immediate impact on EUA prices. Further, EUA prices increase in response to better than expected news on the future economic development as well as the current economic activity in Germany and the U.S.

Suggested Citation

  • Conrad, Christian & Rittler, Daniel & Rotfuß, Waldemar, 2012. "Modeling and explaining the dynamics of European Union Allowance prices at high-frequency," Energy Economics, Elsevier, vol. 34(1), pages 316-326.
  • Handle: RePEc:eee:eneeco:v:34:y:2012:i:1:p:316-326
    DOI: 10.1016/j.eneco.2011.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988311000478
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rotfuß, Waldemar & Conrad, Christian & Rittler, Daniel, 2009. "The European Commission and EUA prices: a high-frequency analysis of the EC's decisions on second NAPs," ZEW Discussion Papers 09-045, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
    2. Conrad, Christian, 2010. "Non-negativity conditions for the hyperbolic GARCH model," Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
    3. Alberola, Emilie & Chevallier, Julien & Chèze, Benoît, 2009. "Emissions Compliances and Carbon Prices under the EU ETS: A Country Specific Analysis of Industrial Sectors," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 446-462, May.
    4. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    5. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
    6. Christian Conrad & Berthold R. Haag, 2006. "Inequality Constraints in the Fractionally Integrated GARCH Model," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 413-449.
    7. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    8. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    9. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    10. Magnus Andersson & Lars Jul Overby & Szabolcs Sebestyén, 2009. "Which News Moves the Euro Area Bond Market?," German Economic Review, Verein für Socialpolitik, vol. 10, pages 1-31, February.
    11. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    12. Alberola, Emilie & Chevallier, Julien & Cheze, Benoi^t, 2008. "Price drivers and structural breaks in European carbon prices 2005-2007," Energy Policy, Elsevier, vol. 36(2), pages 787-797, February.
    13. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    14. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    15. Rotfuß, Waldemar, 2009. "Intraday price formation and volatility in the European Union emissions trading scheme: an introductory analysis," ZEW Discussion Papers 09-018, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
    16. Balduzzi, Pierluigi & Elton, Edwin J. & Green, T. Clifton, 2001. "Economic News and Bond Prices: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(04), pages 523-543, December.
    17. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    18. repec:dau:papers:123456789/4210 is not listed on IDEAS
    19. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    20. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    21. Darrat, Ali F. & Rahman, Shafiqur & Zhong, Maosen, 2003. "Intraday trading volume and return volatility of the DJIA stocks: A note," Journal of Banking & Finance, Elsevier, vol. 27(10), pages 2035-2043, October.
    22. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    23. Daskalakis, George & Psychoyios, Dimitris & Markellos, Raphael N., 2009. "Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1230-1241, July.
    24. Torben G. Andersen & Tim Bollerslev, 1998. "Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," Journal of Finance, American Finance Association, vol. 53(1), pages 219-265, February.
    25. Martin Martens & Yuan-Chen Chang & Stephen J. Taylor, 2002. "A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 283-299.
    26. Laurent, Sebastien & Peters, Jean-Philippe, 2002. " G@RCH 2.2: An Ox Package for Estimating and Forecasting Various ARCH Models," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 447-485, July.
    27. Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.
    28. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
    29. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    30. repec:dau:papers:123456789/4224 is not listed on IDEAS
    31. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    EU ETS; EUA; Second NAPs; Announcement effects; Price formation; Long memory;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:1:p:316-326. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.